Inertial effects on acoustic Rayleigh streaming flow: Transient and established regimes
Abstract
The effect of inertia on Rayleigh streaming generated inside a cylindrical resonator where a mono-frequency standing wave is imposed, is investigated numerically and experimentally. To this effect, time evolutions of streaming cells in the near wall region and in the resonator core are analyzed. An analogy with the lid-driven cavity in a cylindrical geometry is presented in order to analyze the physical meanings of the characteristic times. Inertial effects on the established streaming flow pattern are then investigated numerically using a code solving the time averaged Navier–Stokes compressible equations, where a mono-frequency acoustic flow field is used to compute the source terms. It is shown that inertia of streaming cannot be considered as the leading phenomenon to explain the mutation of streaming at high acoustic levels.
Origin : Files produced by the author(s)
Loading...