Approches sémantiques pour la prédiction de présence d'amiante dans les bâtiments : une approche probabiliste et une approche à base de règles - Laboratoire Interdisciplinaire des Sciences du Numérique Access content directly
Theses Year : 2022

Semantic approaches for predicting the presence of asbestos in buildings : a probabilistic approach and a rule-based approach

Approches sémantiques pour la prédiction de présence d'amiante dans les bâtiments : une approche probabiliste et une approche à base de règles

Abstract

Nowadays, Knowledge Graphs are used to represent all kinds of data and they constitute scalable and interoperable resources that can be used by decision support tools. The Scientific and Technical Center for Building (CSTB) was asked to develop a tool to help identify materials containing asbestos in buildings. In this context, we have created and populated the ASBESTOS ontology which allows the representation of building data and the results of diagnostics carried out in order to detect the presence of asbestos in the used products. We then relied on this knowledge graph to develop two approaches which make it possible to predict the presence of asbestos in products in the absence of the reference of the marketed product actually used.The first approach, called the hybrid approach, is based on external resources describing the periods when the marketed products are asbestos-containing to calculate the probability of the existence of asbestos in a building component. This approach addresses conflicts between external resources, and incompleteness of listed data by applying a pessimistic fusion approach that adjusts the calculated probabilities using a subset of diagnostics.The second approach, called CRA-Miner, is inspired by inductive logic programming (ILP) methods to discover rules from the knowledge graph describing buildings and asbestos diagnoses. Since the reference of specific products used during construction is never specified, CRA-Miner considers temporal data, ASBESTOS ontology semantics, product types and contextual information such as part-of relations to discover a set of rules that can be used to predict the presence of asbestos in construction elements.The evaluation of the two approaches carried out on the ASBESTOS ontology populated with the data provided by the CSTB show that the results obtained, in particular when the two approaches are combined, are quite promising.
De nos jours, les Graphes de Connaissances sont utilisés pour représenter toutes sortes de données et ils constituent des ressources évolutives, interopérables et exploitables par des outils d’aide à la décision. Le Centre Scientifique et Technique du Bâtiment (CSTB) a été sollicité pour développer un outil d'aide à l'identification des matériaux contenant de l'amiante dans les bâtiments. Dans ce contexte, nous avons créé et peuplé l'ontologie ASBESTOS qui permet la représentation des données des bâtiments et les résultats des diagnostics réalisés en vue de détecter la présence d’amiante dans les produits utilisés. Nous nous sommes ensuite basés sur ce graphe de connaissance pour développer deux approches qui permettent de prédire la présence d’amiante dans les produits en l’absence de la référence du produit commercialisé effectivement utilisé.La première approche, nommée approche hybride, se base sur des ressources externes décrivant les périodes où les produits commercialisés sont amiantés pour calculer une probabilité d’existence d’amiante dans un composant du bâtiment. Cette approche traite les conflits entre les ressources externes, et l’incomplétude des données répertoriées en appliquant une approche de fusion pessimiste qui ajuste les probabilités calculées en utilisant un sous-ensemble de diagnostiques.La deuxième approche, nommée CRA-Miner, s’inspire de méthodes de programmation logique inductive (PLI) pour découvrir des règles à partir du graphe de connaissances décrivant les bâtiments et les diagnostics d'amiante. La référence des produits spécifiques utilisés lors de la construction n'étant jamais spécifiée, CRA-Miner considère les données temporelles, la sémantique de l'ontologie ASBESTOS, les types de produits et les informations contextuelles telles que les relations partie-tout pour découvrir un ensemble de règles qui pourront être utilisées pour prédire la présence d'amiante dans les éléments de construction.L’évaluation des deux approches menées sur l'ontologie ASBESTOS peuplée avec les données fournies par le CSTB montrent que les résultats obtenus, en particulier quand les deux approches sont combinées, sont tout à fait prometteurs.
Fichier principal
Vignette du fichier
108419_MECHARNIA_2022_archivage.pdf (3.53 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)

Dates and versions

tel-03676831 , version 1 (24-05-2022)

Identifiers

  • HAL Id : tel-03676831 , version 1

Cite

Thamer Mecharnia. Approches sémantiques pour la prédiction de présence d'amiante dans les bâtiments : une approche probabiliste et une approche à base de règles. Intelligence artificielle [cs.AI]. Université Paris-Saclay, 2022. Français. ⟨NNT : 2022UPASG036⟩. ⟨tel-03676831⟩
159 View
62 Download

Share

Gmail Facebook Twitter LinkedIn More