N
N

N

HAL

open science

Real-Time Model Checking Support for AADL

Bernard Berthomieu, Jean-Paul Bodeveix, Silvano Dal Zilio, M Filali, Didier

Le Botlan, Guillaume Verdier, Francois Vernadat

» To cite this version:

Bernard Berthomieu, Jean-Paul Bodeveix, Silvano Dal Zilio, M Filali, Didier Le Botlan, et al.. Real-
Time Model Checking Support for AADL. [Research Report] LAAS-CNRS. 2015. hal-01121605

HAL Id: hal-01121605
https://hal.science/hal-01121605
Submitted on 2 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01121605
https://hal.archives-ouvertes.fr

Real-Time Model Checking Support for AADL

B. Berthomieu®©, J.-P. Bodeveix®©, S. Dal Zilio®* M. Filali*©,
D. Le Botlan®¢, G. Verdier®°, F. Vernadat®°

*CNRS, IRIT, 118 route de Narbonne, F-31062 Toulouse, France
bCNRS, LAAS, 7 avenue du colonel Roche, F-81400 Toulouse, France
¢Univ de Toulouse, F-31400 Toulouse, France

Abstract

We describe a model-checking toolchain for the behavioral verification of AADL
models that takes into account the realtime semantics of the language and that is
compatible with the AADL Behavioral Annex. We give a high-level view of the
tools and transformations involved in the verification process and focus on the
support offered by our framework for checking user-defined properties. We also
describe the experimental results obtained on a significant avionic demonstrator,
that models a network protocol in charge of data communications between an
airplane and ground stations.

Keywords: Formal verification, Architecture Description Languages, AADL,
Model Driven Engineering

1. Introduction

The increasing complexity of the software and hardware components used
in safety critical systems has encouraged the adoption of new architectures and
computing modules, more powerful, but also more complex than their ancestors.
While these new architectures make development and maintenance easier, it also
make it more difficult to fully understand, analyze and test these systems.

Formal verification methods, such as model-checking, are advocated as one
of the solutions to this consistent increase in design complexity. While verifi-
cation activities should be performed at all stages of the development process,
there are strong incentives for carrying out as much verification as possible dur-
ing the early phases, especially during the functional and architectural design
phases. To support this trend, a number of high level system modeling languages
have been proposed—often referred to as Architecture Description Languages,
or simply ADL—that make it possible to analyze a system right from the design
phase.

*Corresponding author
Email address: dalzilio@laas.fr (S. Dal Zilio)

In this paper, we describe a model-checking toolchain for the behavioral
verification of the Architecture Analysis and Design Language (AADL), an ADL
standardized by the SAE that can describe both the hardware and software
components of a system. The AADL standard address the problem of specifying
and analyzing safety-critical, realtime embedded systems and is designed to
support a Model-Driven Engineering approach. A key extension to this standard
is the addition of a Behavioral Annex that refines the description of AADL
threads behavior and that can therefore be used to describe more precisely the
dynamic architecture of a system.

An advantage of AADL, compared to many other ADL, is to be based on a
precise, unambiguous semantics. Indeed, the AADL standard describe precisely
the behavior of all its components, such as: when can messages be exchanged;
how do periodic and sporadic threads interact; how threads interact with com-
munication or memory resources, such as registers or communication buses;
... Another motivation for choosing AADL is the fact that it relies on classical
hypothesis taken when building realtime systems for its runtime; that is, AADL
favors implementability over expressiveness. This is an interesting characteris-
tic, since it means that every feature of the language can be defined without
resorting to any “unrealistic” primitives (like, e.g., the need for a global consen-
sus primitive). Those characteristics are very helpful for developing semantics
related tools, like automatic code generators, schedulability analysis or formal
verification tools.

Our model-checking toolchain is based on a transformational approach, that
is, on the interpretation (the translation) of an AADL model into a formal
specification language that will take into account the behavior of the model but
also the dynamic semantics related to the AADL standard. We give a high-
level view of the tools and transformations involved in the verification process
and focus on the support offered by our framework for checking user-defined
properties. We also report on some initial experiments carried out in order
to evaluate our framework and give the first experimental results obtained on
significant avionic demonstrator that models a network protocol in charge of
data communications between an airplane and ground stations.

Our toolchain (see Fig. 1) is connected for its input to Adele [1], a semantic
editor for the elaboration of AADL models. At the other end, verification
activities ultimately relies on the Tina toolset [2], that provides state-space
generation and model-checking algorithms for timed Petri Nets. In-between,
the generation of Tina models from an AADL description relies on the use of
an intermediate formal specification language, named Fiacre [3]. Fiacre offers
a formal framework to express and inspect the behavioral and timing aspects
of the system. The intermediate Fiacre model provides a formal representation
of a system behavior that is suitable for analysis using a model-checking tool.
Actually, most of the same toolchain can be used to derive formal specifications
for the Tina and the CADP model-checker [4].

The transformation from AADL to Fiacre is based on a Model Driven En-
gineering approach—where the adaptation and integration between tools is en-
sured by model-based techniques—and has been integrated into an Eclipse-based

Topcased (www.topcased.org)

Adele
(semantic) editors AADL H modeling languages

AADL2Fiacre

RT-Fiacre libraries pivot language

Fiacre

verification engine

Figure 1: AADL to Tina toolchain

toolkit for system engineering called Topcased [5]. Topcased provides an open
source, model oriented set of tooling and standard implementations and AADL
was among the first languages supported in this project.

Our current toolchain is the result of the refinement and maturation of sev-
eral previous versions of the AADL2Fiacre interpretation [6, 7]. In this most
recent iteration of our tool, we have focused on the modularity of the transfor-
mation with the goal to increase its maintainability and to simplify the proof
of its correctness. Indeed, our previous implementation were based on a mono-
lithic interpretation, that is supposed to generate fewer states but that was more
delicate to debug and extend. One of the results obtained from our experimen-
tations is that it is possible to follow a compositional approach for the encoding
without degrading the performances; actually, we observe that following a more
compositional approach makes it is easier to take benefit from symmetries in
the system and to recover static dependencies than can help reduce the number
of interleaving in the generated state space.

Outline:. We briefly describe the AADL execution model in Sect. 2 and focus
on the behavior of threads and their interactions with communication events.
Next, we give a high-level view of the tools and languages involved and illus-
trate the successive transformations required by our verification process. We
describe the Fiacre language and its support for checking user-defined, realtime
properties. In particular, we show how to use realtime specification patterns to
check properties on the interpretation of an AADL model. Before concluding,
we describe in Sect. 5 the results obtained on an AADL demonstrator.

2. AADL Execution Model and the Behavioral Annex

The AADL standard has been designed with the goal to provide a precise
description of both the software components of a system (such as processes,

0 N U AW N

threads, data, ...) as well as the execution platforms supporting them (proces-
sors, devices, buses, memory, ...). The language has both a graphical and a
textual syntax and includes all the usual concepts found in a component-based
languages: components are typed and are described using a semi-structured set
of properties; the interface of a component can be defined using the notion of
features; connections between components can be described using a notion of
links.

The AADL execution model is suitable to describe real-time systems because
it includes the main types of dispatch protocols for threads (periodic, aperiodic,
sporadic, background) and the standard scheduling properties (period, prior-
ity, deadline, WCET, scheduling policy, ...). The language also includes the
basic methods for interaction; components can communicate through ports, syn-
chronous calls, and shared data. The AADL notion of process is the unit for
describing the dynamic semantics of a system. A process represents a virtual ad-
dress space, or a partition, that includes a program and all its sub-components.
A process must contain at least one thread (or thread group) that represents a
sequential flow of execution. Threads are the only AADL components that can
be scheduled. The AADL Behavioral Annex is used to add specific real-time
properties to each component of the dynamic design model and to define the
software behavior at the thread level. We can define the real time properties of
threads by setting specific properties in the AADL specification, like for instance
the dispatch protocol (periodic or sporadic), the period (time) and the deadline
(time). An example of thread declaration using the behavioral annex can be
seen in the AADL code snippet of Listing 1. (An example of AADL graphical
diagrams is given in page 16.)

THREAD thApplis
FEATURES

END thApplis;
THREAD IMPLEMENTATION thApplis.others
SUBCOMPONENTS
app_msg : DATA types::msg.impl;
}

PROPERTIES

Dispatch_Protocol => Periodic; Deadline => 10 ms; Period => 10 ms;
{...}
ANNEX behavior_specification {xx

states —— States Declaration

start : initial state; pending : complete state;

register : complete state; disreg : complete state

transitions

start —{]— pending { app_msg.req := 0; app_msg.dat := 0; };
pending —{ on app_msg.req = Reg | register { app_msg.req := 0; };
pending —{ on app_msg.req = Disreg | disreg { app_msg.req := 0; };
{0}
EE S

END thApplis.others;

Listing 1: Example of AADL behavior description

AADL is supported by several tools like the OSATE initial framework, which

has been integrated into the Topcased environment and extended with OSATE-
BA, the behavioral annex syntax analyzer. For editing models, Adele is a graph-
ical editor which permits to create (graphical) AADL diagrams in Topcased and
to generate AADL source code. Beside this set of tools for the generation and
lexical analysis of AADL models, we describe a methodology and a set of tools
for the formal verification of AADL specifications. For behavioral verification,
we can only focus on a subset of AADL (In particular we do not take into
account hardware components). We briefly describe the semantics of threads,
their scheduling, and the communication through ports and shared data. Modes
are not modeled yet, but we plan to integrate them in our tool.

Communication through ports. Communication, and the way it interacts with
the scheduling of processes, is an important part of the AADL standard. AADL
provides three types of ports—data, event and event data ports—that can be
used to transmit data and control and describe the interface of a component.

Data transmitted through ports is typed. Each input port is associated with
a fresh variable that describes the state of the port. If a port has received
nothing between two thread dispatches this variable is set to false. Each event
or event data input port is also associated with a buffer that stores the data—
or the number of events—sent through connected output ports. On thread
dispatch, these inputs buffers are copied into the local memory of the thread.
Properties can be used to customize the behavior of event and event data ports.
For instance, the property Queue_size determines the maximum number of
events or event data that can be received, while Overflow_handling_protocol
describes the behavior of the port in case of overflow. (There are two default
policies for overflow, drop newest and drop oldest.) The use of the Queue_size
property is useful to generate a finite-state system from a model.

The diagram in Fig. 2 depicts the typical interaction between data commu-
nication through ports and thread dispatching. The axis on this diagram list
the four possible state of a periodic thread: dispatch (the scheduler allows the
thread to run); start; complete (the thread starts, respectively en, its compu-
tation); and deadline (that should always occur after a complete event, if the
system is schedulable).

immediate

data data immediate or delayed data
event standard data
event data event
event data
4
/
1
dispatch start of complete deadline
execution

Figure 2: communication through ports in AADL.

Data ports have the simplest behavior: data is sent at the end of the thread
execution, or at deadline, and is received at the next dispatch of the receiving
thread. At the opposite, event and event data ports can send an event (resp.
an event data) anytime during the execution of a thread. Events and event
data are queued in the destinations ports. Input event and event data ports
are delivered at the dispatch of the thread. Data communications between
periodic threads can be declared as immediate or delayed. If the connection is
delayed, data is sent at the deadline of the sending thread. If the connection
is immediate, the receiving thread must wait the sending thread to complete.
The received data will be available at the start of its (next) execution. All the
possible combination of communication behaviors have been taken into account
in our formal interpretation of AADL.

Communication through shared variables. As with all AADL components, data
has a type and an implementation. The internal structure of the data is de-
scribed in the data implementation. It is possible to specify whether dif-
ferent components have a shared access to a data subcomponent using the
require_data_access connector. Correspondingly, the provide_data_access
connector is used to state that a component allows other components access
to one of its data subcomponent. The concurrency protocol used to access
a data is defined by a data property called concurrency_control_protocol.
This concurrency protocol can be implemented through different concurrency
control mechanisms such as mutex, semaphore ... Concurrency protocols are a
significant source of variability in the definition of the AADL syntax. We take
into account this variability in our interpretation of AADL to Fiacre (and the
possibility to extend the language with new, user-defined, protocols) by provid-
ing an extensible library of protocols and providing supports for checking the
correctness of these protocols. That is, support to prove that the semantics of
a protocol (such as mutual exclusion) is preserved by our interpretation.

3. The Fiacre Specification Language and Realtime Properties

Our verification toolchain is based on a transformation from AADL into an
input format suitable for our model-checking tools. This transformation relies on
the use of the Fiacre specification language to facilitate the processing; simplify
the maintainability of our tool (e.g. when the AADL standard is revised); and
simplify the reasoning on the correctness of the transform.

The Fiacre language has been designed in the context of the Topcased
project [5] to serve as an intermediate format between high-level description
languages and formal verification tools. The use of a formal intermediate mod-
eling language has several benefits. First, it helps reduce the semantic gap
between high-level models and the input format of verification tools that often
relies on low level formalisms, such as Petri Nets or process algebra. Second,
the use of a formal language makes it possible to define precisely the semantics
of the input language “only once” and to share this work among different verifi-

cation toolchains. This is particularly helpful when we try to address emergent
system modeling language, whose semantic evolves rapidly.

8.1. An Example of Fiacre Specification: the Periodic Thread Controller

Fiacre is a formal specification language designed to represent both the be-
havioral and timing aspects of real-time systems. Fiacre supports two of the
most common communication paradigms: communication through shared vari-
able and synchronization through (synchronous) communication ports. In the
latter case, it is possible to associate time and priority constraints to commu-
nication over ports. The design of Fiacre is inspired from decades of research
on concurrency theory and real-time systems theory. For instance, its timing
primitives are borrowed from Time Petri nets, while the integration of time con-
straints and priorities into the language can be traced to the BIP framework [8].
For composing components, Fiacre incorporates a parallel composition operator
and a notion of gate typing which were previously adopted in Lotos-NT. We
briefly describe the language. The detailed syntax and formal semantics of the
Fiacre can be found in [3].

Fiacre programs are stratified in two main notions: processes and compo-
nents. Processes describes the behavior of sequential components. A process
is defined by a set of control states, each associated with an expression that
specifies state transitions (introduced by the keyword from). Expressions are
built from deterministic constructs available in classical programming languages
(assignments, conditionals, sequential composition, ...); non-deterministic con-
structs (choice and non-deterministic assignments); communication events on
ports; and jump to next state (introduced by the keywords loop and to). Com-
ponents describes the composition of processes, possibly in a hierarchical man-
ner. A component is defined as a parallel composition of components and pro-
cesses communicating through ports and shared variables. A component can
be used to restrict the access mode and visibility of shared variables and ports,
to associate timing constraints with communication ports and to define priority
between communication events. We give an example of Fiacre specification in
Listing 2.

The process periodic, defined in Listing 2, models the behavior of an AADL
periodic thread. We consider the simplest case, where the period is equal to
the deadline and where no data is exchanged (the ports have the type none).
The process may interact with its environment through four external ports,
passed as parameters of the process declaration (line 3 of Listing 2): a port for
dispatch (d), complete (c) and deadline events (d1) and a port (w) that is used to
check that the thread has stopped executing—it is idle (s = p_idle)—Dbefore it
reaches a new period. The periodic process loops on the state sO and relies on
a local variable (st) to encode the current condition of the thread (idle, ready
or error). The select operator is used to model a non-deterministic choice
between several transitions, separated by the symbol [1, whereas the keyword
unless is used to assign the highest priority among a set of transitions. Hence,
if st has the value p_err, the process necessarily goes to the state sched_error
where it blocks (line 13). In this transition, the wait operator is used to express

AW N =

o N o

11
12
13
14
15
16
17
18
19
20
21

type p_state is union p_idle | p_rdy | p_err end

process periodic[d: none, c: none, dl: none, w: none] is
states sO0, sched_error
var st: p_state := p_rdy
init to soO
from soO
select
c ; st := p_idle ; loop
O (on st=p_rdy) ; dl ; loop
04 ; loop
O w ; st:= (st=p_rdy ? p_err : p_rdy) ; to sO
unless (on st=p_err) ; wait [0,0] ; to sched_error
end

component main is

port w : none in [20,20], d : none in [0,0] ,
priority ¢ > dl1 >d , ¢’ > d1’ > d’, ...
par periodic[d, ¢, dl1, w| || periodic[d’, c¢’, d1’, w’] || ... end

property reql is 1tl ((main/l/event dl) = {(main/1/event d))

Listing 2: Example of Fiacre process (interpretation of AADL periodic threads)

the fact that the change is instantaneous (it takes a duration in the time interval
[0,0]).

The component main is used to create several instances of the periodic
thread. In our encoding of periodic threads, we declare a new port w for every
instance of the process periodic; this port is associated to a temporal con-
straint of the form [T;T], where T is the period of the thread (in our example,
T = 20). On the opposite, the ports d, ¢ and d1 are instantaneous (they are
associated to the time constraint [0;0]) and constrained by a priority relation
of the form ¢ > d1 > d.

We can express (a very weak form of) the real-time requirements of the
periodic thread using formulas in a temporal logic, like LTL for instance. For
example, we can express the requirement that—in the absence of scheduling
errors—a deadline event is always followed by a dispatch. This property can be
easily expressed in LTL with a formula of the form:

Odeadline = ¢ dispatch (1)

A strong limitation of an approach based on LTL model-checking is that it
is not possible to express timing constraints like, for example, that the dispatch
should happen before T time units of the deadline (where T is the period of the
thread). Another limitation is that it is necessary to understand how events
from the initial AADL model are translated into events or states in the Fiacre
model. In the following section, we show an extension to the Fiacre language
that makes it easier to express timed temporal properties. This extension was
specially added to alleviate the two limitations that we just pointed out.

3.2. Ezxpressing Real-Time Requirements in Fiacre
The chief purpose of the Fiacre language is to express the behavior of real-
time, reactive systems. Nonetheless, it is also possible to declare, inside a Fiacre

model, a set of properties that should be valid on the model. Each property is
declared in the Fiacre model using the keyword property; for example, line 21
of Listing 2 declares a requirement equivalent to the LTL property (1).

In this section, we briefly describe the set of realtime specification patterns
available in our framework. A complete description of the language is given
in [9]. Our language extends the property specification patterns of Dwyer et
al. [10] with the ability to express time delays between the occurrences of events.
The result is expressive enough to define properties like the compliance to dead-
line, bounds on the worst-case execution time, etc. The advantage of this ap-
proach is to provide a simple formalism to non-experts for expressing properties.
Another benefit is that properties expressed with this pattern language can be
directly used with our model-checking tools. The pattern language follows the
same classification that in Dwyer’s work, with patterns arranged in categories
such as occurrence or order patterns. In the following, we study examples of
response and absence patterns.

Response pattern with delay. This category of patterns can be used to express
delays between events, like for example constraints on the Worst Case Execution
Time of a task. The typical example of response pattern states that every
occurrence of an event, say e, must be followed by an occurrence of an event
eo within a time interval I. This pattern is denoted:

e1 leadsto e within T . (leadsto-within)

Events that are observable at the Fiacre level are: a process entering or
leaving a state; a variable changing value; a communication through a port.
Therefore, considering the (sketch of the) interpretation of AADL threads in
Fiacre given in the previous section, we can use the notation t/evente to refer
to a synchronization over the port e on the controller process for the thread t.
Hence, we can check that the execution time of the thread periodic is less than
T units of time with the following requirement, meaning that the time between
a dispatch and a completion is always less than T

property req2 is (main/1/event c) leadsto (main/1/event d) within [0; T|

Absence pattern with delay. This category of patterns can be used to specify
delays within which activities must not occur. A typical pattern in this category
can be used to assert that an activity, say es, cannot occur between d;—ds units
of time after the occurrence of an activity e;. This requirement corresponds to
a basic absence pattern in our language:

absent e, after e; within [dy; ds] . (absent-after)

An example of use for this pattern is the requirement that we cannot have two
dispatch events for the same periodic thread in less than the period, say T":

property req3 is absent (main/1/event d) after (main/1/event d) within]0; T[

A more complicated example of requirement is to impose that, in every run such
that a dispatch is followed by a completion in less than T, then there are no
scheduling error. This requirement can be expressed using the composition of
the properties req2 and reqé:

property req4 is absent (main/1/state sched_error)

8.8. Behavioral Verification with Tina

The “meaning” of a Fiacre program can be expressed as a Timed Transi-
tion System (TTS) [11], defined from the states of the system processes and
from timed transitions between these states. The frac compiler can be used to
build a TTS from a Fiacre program. The Tina verification toolbox [2] offers
several tools to work with TTS files. For instance, for verification purposes,
TTS specifications can be used by selt—a model-checker for a State-Event ver-
sion of Linear Temporal Logic (LTL)—and by muse—a model-checker for the
p-calculus.

Beside the usual analysis facilities of similar environments, the essential com-
ponents of the Tina toolbox are state space abstraction methods and model
checking tools that can be used for the behavioral verification of systems. This
is in contrast with the broader notion of functional verification, in that we at-
tempt to use formal techniques to prove that requirements are met, or that
certain undesired behaviors cannot occur—Ilike for instance deadlocks—without
resorting to actual tests on the system. In this context, state space abstractions
are vital when dealing with timed systems, that exhibit a potentially infinite
state spaces. Tina offers several abstract state space constructions that preserve
specific classes of properties like absence of deadlocks or bisimilarity. A variety
of properties can be checked on abstract state spaces: general properties—such

as reachability properties, deadlock freeness, liveness, ... —specific properties
relying on the linear structure of the concrete space state—for example LTL for-
mulas, test equivalence, ... —or properties relying on its branching structure.

Instead of requiring end-users to provide properties written in a temporal
logic, we propose a set of high-level validation patterns that simplify the elicita-
tion of formal requirements. This pragmatic approach help us mitigate some of
the complexity that is associated with the use of model-checking tools by novice
users. We have implemented an extension to the frac compiler that accepts the
declaration of realtime specification pattern. Currently, timed patterns, such as
the “leadsto property”, are compiled into an observer that is automatically com-
posed with the system at the level of the Timed Transition System. In the case
where the pattern is not valid, we obtain a counter-example, that is a sequence
of events (with time information) that leads to a problematic state.

4. Overview of the AADL Translation and Verification of Libraries

We do not describe precisely the structure of the generated code. In a nut-
shell, we associate a pair of Fiacre processes to each AADL thread and map
each AADL port to a communication port in Fiacre. (Since we focus on the

10

behavior of the system and not its hardware architecture, we take a flattened
view of the AADL model as a set of communicating threads.) Timing infor-
mation, such as the period of threads, are modeled using the time constraints
mechanism provided by Fiacre ports.

The transformation of AADL into Fiacre relies on AADL properties and on
the behavioral annex of AADL that has been developed and integrated to the
OSATE environment. We follow a model-driven approach. Alongside a meta-
model of AADL, we have developed a meta-model of the Fiacre language that
is integrated in the Topcased toolchain. Hence the transformation from AADL
to Fiacre can be obtained through model transformation.

Our interpretation is fully compositional. Every thread is encoded using two
Fiacre processes, one for its controller and another for encoding its behavior.
Additional process instances are created to model the scheduler and the commu-
nication resources. The controller process is in charge of the interaction between
the thread and its scheduler (through the ports for the dispatch, complete and
deadline events) and for recovering data from its event data ports at the right
moment. The controller process is also in charge of the “concurrency protocols”
associated with the shared variables accessed by the thread (see the discussion
at the end of Section 2). Conversely, the behavior process is used to model the
part of the thread definition associated to its behavior specification (given using
the AADL Behavioral Annex), if any. For the behavior process, the interpre-
tation of the AADL BA is quite straightforward, since the behavioral annex is
essentially a glorified syntax for a state transition system. For the controller
process, our interpretation relies on a library of components similar to the code
of the periodic controller given in Listing 2. We provide one process for every
kind of behavioral resource: threads (periodic, sporadic, ...), event and event
data port, data connection, processes and sub-programs (that is schedulers).

The translation takes into account a substantial subset of the AADL stan-
dard and all basic properties are considered when generating a Fiacre model.
More particularly, we take into account AADL priorities, as well as access to
shared variables. For the moment, while periods can change, we assume that
priorities are fixed. Also, we do not take into account preemption or support
for multiprocessor architecture (in particular we do not take into account the
value of the Actual_Processor_Binding property).

Next, we show how we can use our support for expressing user-defined prop-
erties in Fiacre to check the consistency of our interpretation of AADL models
into Fiacre processes. The correctness of our interpretation heavily relies on the
library of AADL components that describe the communication and synchro-
nization protocols used to model the underlying execution model. This library
is made of several patterns of Fiacre code that are parameterized by types (the
types of the values exchanged on the communication channels transferred data);
integers (e.g. the size of the communications queues); and even functions (used
for data encoding). We do not necessarily know how to check these patterns of
Fiacre code automatically. Therefore, several techniques and tools can be used,
depending on the nature of the component in question: model-checking can be
used in the case of “finite-state” code, while theorem proving techniques may

11

be necessary in the most complex cases. (In a separate paper [12], some of the
authors describe the framework necessary to carry out proofs on Fiacre speci-
fications using the Coq assistant prover.) Another source of complexity lies in
the fact that we need to close each code pattern and put it into an environment
that models the context where an AADL component can be used.

In some cases—like with the controller for AADL periodic threads—it is
possible to generate properties of our embedded requirement specification lan-
guage that are enough to prove the correctness of the code pattern. To avoid
the quantification over all possible context where the code can be inserted, these
properties have to be checked each time a new instance of the AADL component
is created. For example, when checking the correctness of the interpretation,
we need to prove that the system is schedulable; meaning that the component
enters the error state (sched_error) if and only if ¢ (the complete event) is ab-
sent between a d and d1 event. This is a consequence of the following property,
(P0a), where t stands for the identifier of the thread instance.

property POa is 1tl O ((t/event d and
((not t/event c) until t/event dl))
= { t/state sched_error)

More specifically, in the case of the periodic thread, we also prove the fol-
lowing list of five requirements. More generally, in our framework, we provide
a specific list of properties for every AADL component in the library (if it cor-
responds to a finite state verification problem).

(POb) scheduling error implies late completion:

property POb is 1tl ((O ((t/event d =
((not t/event dl) until t/event c))))
= 0 (not (t/state sched_error)))

(P1) completion is accepted immediately until scheduling error:

property Pl is t/event c leadsto ((t/value (st=p_rdy)) or
t/state sched_error) within [0,0]

(P2) dispatch is periodic until scheduling error:

property P2 is (t/event dl leadsto (t/event dl or
t/state sched_error) within [1,1])

(P3) deadline is periodic until scheduling error (the event t/start stands for the
initial state of the thread). We need to prove property (P3) for every possible
period T'. Nonetheless, since T is the only timed parameter in this case, it is
enough to consider only one non-null value, say 7" = 1.

property P3 is (t/event dl or t/start) leadsto
(t/event dl or t/state sched_error) within [1,1]

(P4) dispatch occurs immediately after deadline:

property P4 is t/event dl leadsto t/event d within [0,0]

12

Our current toolchain is the result of the refinement and maturation of sev-
eral previous versions of the AADL2Fiacre interpretation [6, 7]. In this most
recent iteration of our tool, we have focused on the modularity of the transfor-
mation with the goal to increase its maintainability and to simplify the proof of
its correctness. Indeed, previous versions of our tool where based on a mono-
lithic interpretation of AADL, where events and data exchanges were mediated
by a specific glue process that manage communication and scheduling protocols.
Another major contribution of this work is to define a framework for declaring
user-defined properties at the AADL-level. The same framework is used to gen-
erate “proof-obligations” that can be checked using our model-checking toolchain
and that ensure that every code pattern is faithful to its intended semantics.

5. Experiments

In this section, we report on experiments carried out (1) for schedulability
analysis through model checking and (2) on the dynamic architecture for a
network protocol (NPL) in charge of data communications between an airplane
and ground stations. For the first study, we observe that model checking allows
for a more precise problem analysis. For the second study, we describe the
architecture of a communication system, the properties that have been checked
and give some quantitative information.

5.1. Schedulability analysis

Analytic methods are well known and extensively applied to schedulabil-
ity analysis. In order to illustrate their limits, we have compared the results
provided by the Chedar tool[13] and our model-checking based tool. The consid-
ered example is a typical non-conservative case which combines dispatch offsets,
non preemptive scheduling and non deterministic execution time. It has been
modelled in AADL but can be summarized by the following table:

Task 1 Task 2 | Task 3
period 20 ms 20 ms | 20 ms
offset 0 3 ms 0
deadline 20 ms 10 ms | 20 ms
priority 1 (high) | 2 3 (low)
BCET..WCET | 1.3 ms | 2 ms 10 ms

As Cheddar does not know how to manage a BCET..WCET interval, the
simulation is done using the WCET bound and the system is declared to be prob-
ably schedulable. However, the Fiacre-based analysis, through the expression
of schedulabilty by absence of deadlock in some specific state, finds the system
schedulable if the execution time is exactly the WCET and non schedulable oth-
erwise. Consequently, the Fiacre-based analysis is more precise. Furthermore,
it allows to take into account the precedence specified by the AADL execution
model (linked to immediate communications). In usual analytic-based schedu-
lability tools like Cheddar, this would require to encode precedence as priorities

13

and to duplicate threads of which precedence depends on the task instance.
Lastly, the Fiacre-based tool can take into account data (of finite domain) to
make even more fine grain analysis. However, this method comes at the cost of
the model-checking state exploration.

5.2. Network protocol

The considered network protocol, named NPL, implements a communica-
tion protocol based on the Trivial File Transfer Protocol (TFTP) allowing a
pilot and ground stations to receive and send information relative to the plane:
weather, speed, destination, ... On the hardware side, the NPL software is run-
ning on an IMA computer and consists of one ARINC 653 partition [14] that
communicates with several other embedded computers through an AFDX field
bus. The dynamic semantics of these IMA components are taken into account
in the AADL model. On the software side, the protocol layer of the NPL is
in charge of handling messages exchanged between on-board applications and
lower ground systems. Messages are exchanged using a realtime extension of
TFTP in order to ensure predictable response time. For instance, the transport
layer can withstand the loss of messages, which are automatically re-emitted
after a timeout. Consequently, the NPL stack can be described using three dif-
ferent layers: a first layer for the high-level APplications Protocols (APP); the
underlying transfer protocol layer (TFTP in this case); and an intermediate,
MiddleWare Protocol (MWP) layer that mediates the communication between
APP and TFTP.

The overall behavior of the MWP layer can be modeled by a communicating
automaton with three main states (closed, opening and open) that correspond
to the states of the “virtual communication” channel between the aircraft and
the ground. While the number of states is small, the dynamics of the system is
quite complex as it requires about sixty transitions: inputs and outputs actions
of the automaton correspond to requests received or sent from/to the on-board
applications or the lower ground layers. The complete NPL system is composed
of several applications, and every data-link application has its own instance of
the communication automaton. The main property that should be checked in
this context is the potential accessibility of each state, meaning that the protocol
can always proceed to completion.

The behavior of the NPL was originally defined by means of sequence dia-
grams describing usage scenarios in nominal and default cases. These sequence
diagrams have all been checked against our automata-based specification in or-
der to assert the correctness of our modeling. A typical usage scenario is given
in Figure 3 that details a registration sequence between an application proto-
col (APP); the MiddleWare Protocol (MWP); the transfer protocol; and ground
layers tasks (the dashed, vertical line). This is the most significant activity in the
NPL since every application has to register before starting any data exchanges
with ground stations. The scenarios illustrates two modes of the system. If the
MWP is in state closed and receives a registration_request message from
the APP, it initiates a connection (the MWP goes into state opening). If the

14

MWP is in the opening state and receives a data_indication message from
TFTP then the connection is established (the MWP enters state open).

Registration Req
Write Request

ite Confirmation

L

Write Indication

Write Acceptation -

N
Registration Confirm Data Indication

.
| app | | MwP | TFTP

Figure 3: APP registration sequence diagram

5.2.1. Protocol Modelling with AADL

The NPL software subset has been modeled as a single application composed
of one main AADL component. This model is mainly derived from an imple-
mentation of the system in the C language provided by Airbus (see e.g. [7]).
The AADL model specifies both the hardware and software architecture of the
component and is composed of: an AADL processor with its memory (AADL
hardware component types); and one main AADL process that encloses five
AADL threads (AADL software component types). The diagram in Fig. 4 de-
tails the architecture of the main AADL process using the AADL graphical
syntax. (This diagram has been edited with the ADELE graphical modeler [1].)
We have highlighted the five threads of the NPL component, which carry out
the main functions of the application. A first thread takes care of the data-link
applications (thApplis) while there is another thread for the message scheduler
(thSegMsgMWP). The remaining threads are used for: implementing the MWP
state automaton (thMWP); supporting the Timer functions (thTIMER); and sup-
porting the underlying TFTP protocol (thTFTP). In our model, all these threads
are periodic with periods ranging from 5 ms to 20 ms.

The architecture of data connections between threads is regular. Each pair of
threads (excluding the timer thTIMER) is connected through at least two mem-
ory buffers that are used to store the data exchanged between the threads over
asynchronous communication channels. A first buffer is used to hold a wake-
up signal while the other carries the message part. For instance, the buffer
Wkup_Appli is used to store the “wake-up” signal from the MWP controller,
thMWP, to the data-link applications. While this choice complicates the descrip-
tion of the system, we chose to model communication between threads using

15

thApplis 3

‘wkup_Appli

L

Msq_Appl

Msg_Appli_in q

Ext2apl i thTIMER 2.
<] H monG————
PP ApI2Ext i ,‘, WU_MWP3 m-on <
] i Trnr_OfF <-
—) tsq_Appli_out i i 1
! LR [thssqhsabte___ Sy M, 2.
i Py] B 1 i 7]

: 1 | TsUR_Off TSURV.On
Wi, Mo | TimeOut_TSURY 1 ?Tsukvg.meout . i

P tirkup2seq H
i whup_appi_out: 4

Msg_A

. ‘—|:'—b e

Msg_bwp

7|:'——. e

tsg T

..., S— 2, { Msg_Ftp {—7I:|—. Msg_Tftp_Mwp

wu_mwr2 4—
L msq_Titp_out ;
i ! H : Msg_TFtp_out ‘
T ExtzFtp H . ; H wiup_Tftp_out
i et Whup_Tip i T
wkup_Thp_in 4@
[HfpzEt el Ftp2Ext |
Msg_Tftp

Msg_Tftp_in

Figure 4: Graphical representation of the NPL component

shared data access, instead of event data port, because it is closer to the actual
design found on avionics software.

All the threads adhere to a common communication protocol. When a thread
needs to communicate with another thread, it first put its message into the
dedicated buffer (for instance Prim_Appli) and then put its identifier into the
associated wake-up buffer. When a thread receives an identifier into its wake-up
buffer (pooling), it reads the message and then clear the identifier. Some threads
have also access to data generated outside the MWP, like for example message
frames exchanged with the environment, or are connected through specific event
ports (for instance, the timer and the MWP controller threads). Data exchanged
with the environment are defined as structured, composite data formed from
several integer fields.

In our model, the behavior of each thread is expressed using the AADL
Behavioral Annex syntax. The complete AADL specification of the MWP sys-
tem requires eight graphical diagrams (of the same complexity than the one
given in Figure 4). In its textual format, this amounts to about 800 lines of
AADL source code with more than half of this code automatically generated
from the graphical specification. On these 800 lines, the behavior of the MWP
controller amounts to about 300 lines of code. This specification can be easily
reused. Hence, several applications and MWP threads could be modeled by us-
ing several instances of the same AADL specifications with update connections
between them.

16

5.2.2. Functional Verification by Model-Checking

We used our verification toolchain to check properties on the AADL spec-
ification of the Air Traffic Control system. These properties corresponds to
requirements expressed by the system engineers. Our experiments were success-
ful as it is possible to verify a substantial architecture model extracted from the
ATC. The main properties automatically checked on this model can be grouped
into three main categories: (1) absence of deadlocks, e.g. the system can not
lock himself due to a wrong synchronization; (2) healthiness, e.g. every thread
(task) can run and compute infinitely often; and (3) absence of dead states,
e.g. every internal behavior state of every thread is reachable. We also checked
several properties related to the correctness of our interpretation, e.g. to check
that the AADL semantics is preserved in our translation to Fiacre.

The use of formal verification techniques at the model-level is particularly
interesting in the case of the ATC system. Indeed, the design used in the
definition of the communication architecture is prone to concurrency access
problems since all threads must agree on the same order when accessing data.

We give more details on the properties that have been formally checked
on the model. The goal was to defined a set of simple “property patterns” for
dynamic architecture verification and to give them to avionics software engineers
with no previous knowledge of model-checking or temporal logic. We defined
three (untimed) patterns that were used by system engineers to detect real-time
pathologies and that correspond to the three categories of requirements listed
before.

e NoGlobalDeadlock, applies to the whole model. This pattern checks for
absence of global deadlocks, that is, the system can not lock himself due
to a wrong synchronization;

e Unreachable (exp), applies to an internal state. This pattern checks for
the presence of dead states. This is useful to check wether a thread may
reach a given behavior state;

e Resettable (exp), applies to a thread dispatch state. This pattern
checks for healthiness, that is the fact that a given thread can be dis-
patched infinitely often.

These three patterns can be directly encoded in terms of the LTL-dialect used
by the selt model-checker. The pattern NoGlobaldeadlock is expressed by the
formula [1 - dead, meaning that for every reachable state (always) it is false
that no transitions can be taken from this state. The pattern Unreachable (exp)
is equivalent to the formula [1-exp (or absent exp), meaning that always, the
property exp is false. Finally, the pattern Resettable (exp) is equivalent to
the formula []<>(exp), meaning that always, we will eventually (after a finite
number of transitions) enter in a state where the property exp is satisfied. For
example, the pattern Resettable (thApplis/event d) can be used to test
whether the thread thApplis will (always) eventually be dispatched. In addi-
tion to these simple (untimed) patterns, we have also used the leadsto pattern

17

to find an upper limit on the time needed for the completion of the sequence
diagram given in Fig. 3.

With respect to performances, our verification toolchain is able to handle the
generation of the complete state space of the demonstrator —which amounts to
about 110000 states and 150 000 transitions for the Fiacre intermediate model—
without any memory overflow on a typical basic development computer (Intel
dual-core processor at 2 GHz clock frequency, and 2 Go of RAM memory). The
abstract state space construction and system compiling are performed, on the
same computer, in less than 5 minutes with a memory footprint in the order of
500 Mo of RAM. On examples of this size, the model checker included in Tina
is able to generate the whole state space of the system in 15s and to prove a
formal properties in a few seconds. For example, it takes less than 2 minutes
to check the 22 properties derived from the patterns listed before: one test for
NoGlobalDeadlock; 5 resettable property (one for each thread in the system);
and 16 reachability test (one for each state of each thread).

The state space obtained with our new, modular implementation of the
AADL2Fiacre generator is slightly smaller than the one obtained with our pre-
vious, monolithic approach [7]. This is a nice surprise, since a monolithic inter-
pretation is supposed to produce a system with less interleaving (and therefore
fewer states). The reason behind this surprising result is that we can use a finer
treatment of priorities between independent threads with a modular approach
and therefore actually reduce the number of interleaving in this case.

This experimentation, while still modest in size when compared to a full-
blown avionic protocol, gives a good appraisal of the use of formal verification
techniques for real industrial software. These experimental results are very
encouraging. In particular, we can realistically envisage that system engineers
could evaluate different design choices for the MWP protocol stack in a very
short time cycle and test the safety of their solutions at each iteration.

6. Related works

Related work concerning the verification of AADL models is organized in
three subsections: model-checker-based tools for verifying AADL models through
their translation to the input language of existing tools, model-checking-based
verification of the translation to check intrinsec AADL semantics properties,
and analytic methods applying scheduling analysis techniques to high level ab-
stractions.

6.1. AADL subsets

A number of studies have explored how to interpret the AADL standard in
a formal setting.

A specification of the AADL execution model in the Temporal Logic of Ac-
tions (TLA) is given in [15] that defines one of the earliest formal semantics
for AADL. This encoding takes into account a fixed priority scheduling proto-
col with preemption, the management of modes and communication through

18

ports and shared data. Our approach is based on an interpretation of AADL
specifications, including the Behavioral Annex, in the Fiacre language.

A direct encoding from AADL to Petri net is studied in [16] that takes into
account a more limited subset of AADL (it restricts the behavior of software
components and omits realtime properties of elements).

Other target formalisms have also been studied. An encoding of AADL in
BIP is presented in [17] that focuses on the behavioral annex as well as on
threads, processes and processors. The approach is improved in [18] by taking
into account the management of AADL communication protocols. When com-
pared to BIP, the current version of Fiacre provides less high-level constructs—
therefore encodings are less direct—but offers better compositional and real-time
properties. The library of AADL component defined in our approach is a first
step toward providing higher-level modeling construct in Fiacre.

Some works consider different technologies for defining the behavior of soft-
ware components. In [19], the authors study the case where behaviors are
described in a synchronous language, such as Scade or Lustre. In this case,
they define a direct translation that generate an executable model of the soft-
ware behavior. Such a model is usable for early simulation, but also for formal
verification, using tools available for Scade and Lustre.

Within the COMPASS project, [20] propose the verification of linear or
branching time properties on AADL-like models with hybrid behaviors. Prob-
abilistic properties are also considered. However, the semantics of AADL is
not precisely considered, while it is one of the main features of our proposal,
together with the management of time.

The ABV-A verifier[21] does not translate the AADL model to an existing
modelling language. It directly evaluates temporal logic formulas (written in
CTL) on a state space generated from the AADL model, including the behavior
annex. However, timing information are ignored and the adequacy with the
AADL runtime semantics is not discussed.

In [22], the semantics of AADL models in specified in real-time Maude:
timed rewriting rules specify the update of the system configuration. The time
domain can be discrete or dense. Time advances non deterministically until
reaching the date of the next event. Quantitative linear time properties can be
defined and verified by the Maude model checker. However, the compositional
Maude-based semantics introduces to much asynchrony and leads to inefficient
model-checking. For this purpose a synchronous variant of the tool has been
developped [23], but takes as input a subset of AADL (only periodic and syn-
chronous threads, restricted communication patterns).

Finally, other works [24, 25] have focused on AADL data communication
handling but leave the connection with a formal verification tool as a perspective.

6.2. Translation verification

Another distinctive feature of our work is the concern for checking the cor-
rectness of our interpretation. In this paper, we concentrate on the definition
of ways to check properties on a AADL specification using model-checking, how

19

to express properties and what kind of properties can be expressed. In another
related work [12], we describe the semantical framework used for the transfor-
mation of AADL into Fiacre and how to check the correctness of this translation
using proof assistant. This companion paper gives more details on the formal se-
mantics of subsets for both AADL and Fiacre and gives a high-level description
of the translation from one framework to the other.

6.3. Analytic methods

Finally, we have also compared our approach with other AADL related tools,
outside the domain of formal verification, for example with scheduling analy-
sis tools, such as Cheddar [26], that need to analyze the behavior of (or even
simulate) AADL models. Even if analytical methods outperform model-checker
when the scheduling policy and the analyzed model fall into one of the cases
covered by the tool, we have easyly illustrated the limitations of analytical and
simulation-based approaches using a simple, non-conservative model combining
offsets and non-preemptive scheduling.

7. Conclusion

This paper describes a formal verification toolchain for AADL that takes
into account the Behavioral Annex. We give a high-level view of the tools and
the transformations involved in our verification process. While the methodology
of our verification toolchain has already been described in previous works [6],
this paper is the first occasion to report on a experimental study that was
conducted on a significant avionic demonstrator. It is also the first time that we
describe our modular interpretation approach as well as the use of specification
pattens to check basic properties on the correctness of our encoding (such as
the schedulability of the resulting system). This study gives some interesting
directions for further studies. There are several areas for improvements, such as:
enhancing and standardizing our library of AADL component and validation
patterns; improving the behavioral modeling capabilities of the Adele editor
(e.g. with a graphical representation of the behavioral annex); and improving
the integration of the transformation toolchain in Topcased, in particular with
respect to a better presentation of the verification results to the end user.

Work is still ongoing to improve the tools involved in our verification frame-
work. A number of extensions to Tina are being evaluated, concerning new tools,
new front-ends, and new back-ends. For instance, we are experimenting with
the addition of suspension/resumption of actions to Time Petri nets, which is
of great value for modeling scheduled real-time systems. Alongside these works
on tools, our current efforts are directed toward three main objectives:

(1) Simplifying the definition of logical properties. End users of verification
tools should not be required to master temporal logic. To improve the usability
of our approach, we are currently investigating the proposition of a kit of prede-
fined AADL requirements or the integration with an AADL-based requirement
specification framework.

20

(2) Improving error reporting. We plan to provide a “debugging” proce-
dure, which should take as input a counter-example produced during the model-
checking stage and convert it to a trace model of the initial AADL description.
These traces should be played back using simulation tools.

(3) Improving the Verification Process. We are currently investigating ex-
tensions to the Fiacre language in order to ease the interpretation of high-level
description languages and to optimize the verification process. One welcome
addition would be to integrate the notion of modes directly in Fiacre. We also
plan to address the problem of specifying scheduling and time-constrained be-
haviors within Fiacre. These aspects should have a great impact on the overall
performance of the analysis tool.

References

[1] P. Dissaux, ADELE: a versatile system architecture graphical editor based
on AADL, http://gforge.enseeiht.fr/projects/adele/.

[2] B. Berthomieu, P.-O. Ribet, F. Vernadat, The tool TINA — Construction
of Abstract State Spaces for Time Petri Nets, Int. Journal of Production
Research 42(14), (see http://projects.laas.fr/tina/).

[3] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gau-
fillet, F. Lang, F. Vernadat, Fiacre: an Intermediate Language for Model
Verification in the Topcased Environment, in: European Congress on Em-
bedded Real-Time Software (ERTS), 2008, (see http://projects.laas.
fr/fiacre/).

[4] H. Garavel, F. Lang, R. Mateescu, W. Serwe, Cadp 2010: A toolbox for
the construction and analysis of distributed processes, in: P. A. Abdulla,
K. R. M. Leino (Eds.), TACAS, Vol. 6605 of LNCS, Springer, 2011, pp.
372-387.

[5] P. Farail, P. Gaufillet, A. Canals, C. Le Camus, D. Sciamma, P. Michel,
X. Crégut, M. Pantel, The TOPCASED project: a Toolkit in Open source
for Critical Aeronautic SystEms Design, in: European Congress on Em-
bedded Real-Time Software (ERTS), 2006.

[6] B. Berthomieu, J.-P. Bodeveix, C. Chaudet, S. Dal Zilio, M. Filali, F. Ver-
nadat, Formal verification of aadl specifications in the topcased environ-
ment, in: Ada-Europe 09 — 14th International Conference on Reliable Soft-
ware Technologies, 2009.

[7] B. Berthomieu, J.-P. Bodeveix, S. Dal Zilio, P. Dissaux, M. Filali, S. Heim,
P. Gaufillet, F. Vernadat, Formal Verification of AADL models with Fiacre
and Tina, in: ERTSS 2010 — 5th International Congress and Exhibition on
Embedded Real-Time Software and Systems, 2010, pp. 1-9.

21

[8] A. Basu, M. Bozga, J. Sifakis, Modeling heterogeneous real-time systems
in BIP, in: SEFM — IEEE Conference on Software Engineering and Formal
Methods, 2006.

[9] N. Abid, S. Dal Zilio, D. Le Botlan, Real-Time Specification Patterns and
Tools, in: FMICS 2012 — 17th International Workshop on Formal Methods
for Industrial Critical Systems, Vol. 7437 of Lecture Notes in Computer
Science, Springer-Verlag, 2012, pp. 1-15.

[10] M. B. Dwyer, G. S. Avrunin, J. C. Corbett, Patterns in property specifica-
tions for finite-state verification, in: ICSE’99, 1999, pp. 411-420.

[11] T. A. Henzinger, Z. Manna, A. Pnueli, Timed Transition Systems, in: REX
Workshop, 1991, pp. 226-251.

[12] J.-P. Bodeveix, M. Filali, M. Garnacho, R. Spadotti, Z. Yang, On the
Mechanization of an AADL Subset, Science of Computer Programming :
special issue on Architecture Design Language(Submitted).

[13] F. Singhoff, J. Legrand, L. Nana, L. Marcé, Cheddar: A flexible real time
scheduling framework, Ada Lett. XXIV (4) (2004) 1-8.

[14] ARINC 653 — avionics application software standard interface, specification
653, airlines electronic engineering committee (1997).

[15] J.-F. Rolland, J.-P. Bodeveix, D. Chemouil, D. Filali, M.and Thomas, To-
wards a formal semantics for AADL execution model, in: ERTS 2008 —
European Congress on Embedded Real-Time Software, 2008.

[16] T. Vergnaud, Modélisation des systémes temps-réel répartis embarqués
pour la génération automatique d’applications formellement vérifiées, Ph.D.
thesis, Ecole nationale supérieure des télécommunications (2006).

[17] M. Bozga, V. Sfyrla, J. Sifakis, Modeling synchronous systems in BIP, in:
S. Chakraborty, N. Halbwachs (Eds.), EMSOFT, ACM, 2009, pp. 77-86.

[18] L. Pi, J.-P. Bodeveix, M. Filali, Modeling AADL Data Communication
with BIP, in: Ada-Europe 2009 — 14th International Conference on Reliable
Software Technologies, 2009, pp. 192-206.

[19] E. Jahier, N. Halbwachs, P. Raymond, X. Nicollin, D. Lesens, Virtual Exe-
cution of AADL Models via a Translation into Synchronous Programs, in:
EMSOFT — ACM & IEEE international conference on Embedded software,
2007.

[20] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, M. Roveri,
R. Wimmer, A model checker for aadl, in: T. Touili, B. Cook, P. Jackson
(Eds.), CAV, Vol. 6174 of Lecture Notes in Computer Science, Springer,
2010, pp. 562-565.

22

[21]

[22]

[23]

[24]

[25]

[26]

S. Bjérnander, C. C. Seceleanu, K. Lundqvist, P. Pettersson, Abv - a verifier
for the architecture analysis and design language (aadl), in: I. Perseil,
K. Breitman, R. Sterritt (Eds.), ICECCS, IEEE Computer Society, 2011,
pp- 355-360.

P. C. Olveczky, A. Boronat, J. Meseguer, Formal semantics and analysis
of behavioral aadl models in real-time maude, in: J. Hatcliff, E. Zucca
(Eds.), FMOODS/FORTE, Vol. 6117 of Lecture Notes in Computer Sci-
ence, Springer, 2010, pp. 47-62.

K. Bae, P. C. Olveczky, A. Al-Nayeem, J. Meseguer, Synchronous aadl and
its formal analysis in real-time maude, in: S. Qin, Z. Qiu (Eds.), ICFEM,
Vol. 6991 of Lecture Notes in Computer Science, Springer, 2011, pp. 651—
667.

C. André, F. Mallet, R. de Simone, Modeling of immediate vs. delayed data
communications: from AADL to UML Marte, in: Forum on specification
& Design Languages, 2007.

P. Feiler, Efficient embedded runtime systems through port communication
optimization, in: Proc. of ICECCS — IEEE International Conference on
Engineering of Complex Computer Systems, 2008.

M. Kerboeuf, A. Plantec, F. Singhoff, A. Schach, P. Dissaux, Comparison
of six ways to extend the scope of cheddar to aadl v2 with osate, in: In
proc. of ICECCS, 2010, pp. 367-372.

23

