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ABSTRACT

Fitting multivariate Gaussian functions constitutes a funda-

mental task in many scientific fields. However, most of the

existing approaches for performing such fitting are restricted

to 2 dimensions and they cannot be easily extended to higher

dimensions. One of the main applicative areas where it is nec-

essary to go beyond the existing techniques is the modeling of

Point Spread Functions in 3D imaging. In this paper, a novel

variational approach is proposed to fit multivariate Gaus-

sians from noisy data in arbitrary dimensions. The proposed

FIGARO algorithm is applied to two-photon fluorescence

microscopy where its excellent performance is demonstrated.

Index Terms— PSF identification, image restoration,

two-photon microscopy, proximal methods, optimization

1. INTRODUCTION

A large majority of biological and medical studies require

the use of microscopy systems. In this context, numer-

ous technological solutions have been developed. Among

them, two-photon fluorescence microscopy (TPFM) is one

of the most popular and robust techniques in fluorescence

microscopy experimentally demonstrated for the first time in

1990 [1]. Based on a process theoretically predicted in 1931

[2], it has found its place owing to its specific features such

as 3D imaging capabilities, micrometer resolution, or limited

photobleaching thanks to the use of excitation wavelengths in

the near infrared range (NIR) [3]. This nonlinear fluorescence

method tends to replace classical ones working in the visible

range. However, its resolution remains limited by the diffrac-

tion phenomenon, amplified by the shifting of wavelengths

in NIR. In practice, the image of an infinitesimally point-

source is thus never an image-point but a spread of the in-

finitesimally source. The mathematical representation of the

light distribution of this spread phenomenon is well-known

and described by the Point Spread Function (PSF). Several

super-resolution microscopy methods have been proposed to

reduce the effect of the PSF, namely structured illumination

microscopy (SIM), stimulated emission depletion (STED),

stochastic optical reconstruction microscopy (STORM), or

photoactivatable localization microscopy (PALM) (see [4]

and references therein). Nonetheless, whatever the chosen

imaging system, the PSF still exists which determines the op-

tical accuracy of the microscope. The precise knowledge of

the PSF pattern and its use in image processing allow access

to hidden information from the raw data. In particular, image

recovery techniques can be applied to the raw images in order

to compensate the blur introduced by the microscope [5, 6].

In this way, the resolution of the system can be improved

and details lost during the acquisition can become visible.

The implementation of an efficient deblurring strategy often

requires a preliminary step of experimental data acquisition,

aiming at modeling the PSF whose shape depends on the

optical parameters of the microscope. The fitting model is

chosen as a trade-off between its accuracy and its simplicity.

Several works in this field have been inventoried and specif-

ically developed for fluorescence microscopy [7, 8, 9]. In

particular, Gaussian models often lead to both tractable and

good approximations of PSF [10, 11, 12, 13, 9]. Although

there exists an important amount of works regarding Gaus-

sian shape fitting [14, 15, 16, 17, 18, 13], to the best of our

knowledge, these techniques remain limited to the 1D or 2D

cases. Moreover, only few of them take into account explic-

itly the presence of noise. Finally, a zero background value

is usually assumed (for instance, in the famous Caruana’s

approach [14]). All the aforementioned limitations severely

reduce the applicability of existing methods for processing

real 3D microscopy datasets.

In this paper we propose a variational approach for PSF mod-

eling through multivariate Gaussian fitting. In Section 2, the

data fitting problem is formulated, and our minimization ap-

proach is introduced. The position of our contribution with

respect to related works is also discussed. A convergent prox-

imal alternating optimization method called FIGARO is then

proposed to find a minimizer of the proposed cost function.

In Section 3, the validity of our approach is demonstrated

on 3D fluorescence bead images acquired in TPFM. Finally,

Section 4 concludes the paper.



2. A NEW GAUSSIAN FITTING METHOD

2.1. Observation model

Let us consider the problem of fitting a Gaussian model from

noisy acquisitions on a Q-dimensional grid and let us assume

that N points of coordinates X = (xn)1≤n≤N ∈ (RQ)N

have been acquired. In the context of PSF modeling in mi-

croscopy, one usually has to deal with volume data (i.e. Q =
3), and X maps the positions of voxels in a volume of inter-

est delimiting the location of a fluorescent bead. The observed

data y ∈ R
N can be modeled as

(∀n ∈ {1, . . . , N}) yn = a+ bpn + wn, (1)

where a ∈ R is a background term, b ∈]0,+∞[ is a scal-

ing parameter, p = (pn)1≤n≤N represents a noiseless ver-

sion of the data, and w = (wn)1≤n≤N ∈ R
N represents

some acquisition noise. Our goal is to estimate (a, b,p) from

the noisy data y, assuming that p can be well approximated

by a multivariate Gaussian shape. The underlying assump-

tion is that each entry pn is close, in some sense to be pre-

cised, to the value at xn of the probability density function

u 7→ g(u,µ,C), of a Q-dimensional normal distribution

with mean µ ∈ R
Q and precision (i.e., inverse covariance)

matrix C ∈ S++(Q) 1 expressed as

(∀u ∈ R
Q)(∀µ ∈ R

Q)(∀C ∈ S++(Q))

g(u,µ,C) =
|C|1/2

(2π)Q/2
exp

(
−
1

2
(u− µ)⊤C(u− µ)

)
,

(2)

where |C| denotes the determinant of matrix C. The problem

is thus to find an estimate (â, b̂, p̂, µ̂, Ĉ) of (a, b,p,µ,C) op-

timally describing the data y.

Fitting Gaussian functions to multivariate empirical data

is of prominent importance because of its wide array of appli-

cations in various areas such as biological imaging, but also

spectroscopy, statistics and machine learning. Thus, there is

a significant amount of works on this subject [14, 15, 16,

17, 18, 13]. Two classes of methods can be distinguished,

either based on non-linear least squares approaches [15, 16,

18, 13] or on the so-called Caruana’s formulation minimizing

the difference of logarithms between the data and the model

[14, 17, 12]. However, all the aforementioned works are fo-

cused on the resolution of the fitting problem when Q = 1
[14, 15, 17, 18] or Q = 2 [16, 12, 13]. Moreover, except

in [18] where a polynomial background is accounting for, the

background term a is considered as zero. Finally, to the best

our knowledge, all existing works consider the equality be-

tween y and its noisefree version p, which may lead to a low

robustness to model mismatch errors. In the next subsection,

1In the paper, S++(Q) stands for the set of symmetric positive definite

matrices of R
Q×Q, S+(Q) is the set of symmetric positive semidefinite

matrices of RQ×Q and S(Q) is the set of symmetric matrices of RQ×Q.

we propose a novel variational approach that is able to cope

with any dimension Q, that considers explicitly the presence

of a background term, noise and that accounts for possible

modeling errors in the model.

2.2. Proposed approach

For technical reasons, let us assume that the spectrum of C is

bounded from below, i.e., there exists some ǫ > 0 such that

we can rewrite C = D + ǫIQ where D belongs to S+(Q).
In practice, this simply means that the Gaussian variances in

any direction are bounded above. We then propose to define

(â, b̂, p̂, µ̂, D̂) as a minimizer of a hybrid cost function, gath-

ering information regarding the observation model (1) and the

Gaussian shape prior (2). In what follows, we will denote by

ιS the indicator function of a nonempty closed convex set S,

so that ιS(u) = 0 for u ∈ S, and +∞ elsewhere, and PS

the projection operator on this set. This will allow us to add

explicitly some constraints which are expected to be met by

the sought solution. The proposed cost function reads:

(∀a ∈ R)(∀b ∈ R)(∀p ∈ R
N )(∀µ ∈ R

Q)(∀D ∈ S(Q))

F (a, b,p,µ,D) =
1

2
‖y − a− bp‖2 + ι[amin,amax](a)

+ ι[bmin,bmax](b) + λΨX(p,µ,D). (3)

In particular, amin ≤ amax and 0 < bmin ≤ bmax are some

known bounds on a and b respectively, and λ > 0 is a regu-

larization parameter. The term ΨX aims at introducing some

prior knowledge on p and seeks for favoring the proximity be-

tween p and the Gaussian model (2) parametrized by (µ,D).
We propose to measure this closeness by the Kullback-Leibler

(KL) divergence between p and the sought multivariate nor-

mal distribution [19]. Since we only have access to a discrete

set of data, parametrized by their grid position X , the integral

usually employed in the KL divergence will be replaced by a

finite summation weighted by a grid sampling step ∆ > 0.

Moreover, in order to preserve consistency of the Gaussian

normalization constant, we will search for p̂ that belongs to

the affine hyperplane C =
{
p ∈ R

N
∣∣ p⊤

1N = ∆−1
}

⊂
R

N , where 1N is the vector of RN with all entries equal to

one. We also introduce the two following logarithmic func-

tions involved in the KL term: for every u ∈ R, ent(u) equals

u log u if u > 0, 0 if u = 0 and +∞ otherwise. For every

D ∈ S(Q), we further define

ϕ(D) =

{
−
∑Q

q=1 log(σq + ǫ) if D ∈ S+(Q)

−Q log ǫ− ǫ−1σ⊤
1Q + 1

2ǫ
−2σ⊤σ otherwise,

(4)

where D = UDiag(σ)U⊤ with U ∈ R
Q×Q an orthogo-

nal matrix and σ = (σq)1≤q≤Q the associated eigenvalues.

The function ϕ is introduced here as a twice continuously dif-

ferentiable extension of the neg-logarithmic determinant term

on the whole domain S(Q). We are then ready to define the



function ΨX as

(∀p ∈ R
N )(∀µ ∈ R

Q)(∀D ∈ S(Q))

ΨX(p,µ,D) = ∆

N∑

n=1

(
ent(pn) + pn

(Q
2
log(2π)

+
1

2
(xn − µ)⊤(D + ǫIQ)(xn − µ) +

1

2
ϕ(D)

))

+ ιC(p) + ιS+(Q)(D). (5)

2.3. Algorithmic solution

The objective function (3) is nonconvex, yet convex with re-

spect to each variable. A standard resolution approach is thus

to adopt an alternating minimization strategy, where, at each

iteration, F is minimized with respect to one variable while

the others remain fixed. This approach, sometimes referred

to as Block Coordinate Descent or nonlinear Gauss-Seidel

method, has been widely used in the context of PSF model

fitting [13, 8, 11]. However, its convergence is only guar-

anteed under restrictive assumptions [20]. In order to get

sounder convergence results, we propose to use an alterna-

tive strategy based on proximal tools which consists of re-

placing, at each iteration the minimization step by a proximal

step [21, 22, 23]. The application of the proximal alternating

method to the minimization of (3) yields Algorithm 1, called

FIGARO (Fitting Gaussians with Proximal Optimization).

Algorithm 1 FIGARO method

a(0) ∈ [amin, amax], b
(0) ∈ [bmin, bmax],p

(0) ∈ C,µ0 ∈
R

Q,D(0) ∈ S+(Q), (γa, γb, γp, γµ, γD) ∈]0,+∞[5.

for i = 1, 2, . . . do

a(i+1) = P[amin,amax]

(
a(i)+γa1

⊤

N (y−b(i)p(i))
1+γaN

)

b(i+1) = P[bmin,bmax]

(
b(i)+γb(y−a(i+1)

1N )⊤p(i)

1+γb(p(i))⊤p(i)

)

p(i+1) =
(
(ρ(i))−1W

(
ρ(i) exp

(
v
(i)
n (ν̂(i))

)))
1≤n≤N

µ(i+1) =
(
IQ + γµλ∆(1⊤

Np(i+1))(D(i) + ǫIQ)
)−1

×
(
µ(i) + γµλ∆

∑N
n=1 p

(i+1)
n (D(i) + ǫIQ)xn

)

D(i+1) =
1

2
V (i)Diag

{
P[0,+∞[Q

(
ω(i) + η(i)

)}
(V (i))⊤

end for

Hereabove, at each iteration i ∈ N, ρ(i) = (γp(b
(i))2 +

1)/(γpλ∆), and for every n ∈ {1, . . . , N}, v
(i)
n : ν 7→ −1 −

c(i) + (γpλ∆)−1(p
(i)
n + γpb

(i)(yn − a(i))− ν) with

c(i) =
Q

2
log(2π)−

1

2
log(|D(i) + ǫIQ|)

+
1

2

N∑

n=1

(xn − µ(i))⊤(D(i) + ǫIQ)(xn − µ(i)).

Furthermore, ν̂(i) denotes the unique zero of the function ν 7→

(ρ(i))−1
∑N

n=1 W(ρ(i) exp(v
(i)
n (ν)))−∆−1, where W is the

Lambert-W function [24]. Finally, ω(i) = (ω
(i)
q )1≤q≤Q ∈

R
Q (resp. V (i) ∈ R

Q×Q) is the vector of eigenvalues (resp.

associated matrix of eigenvectors) of the symmetric ma-

trix D(i) − 1
2γDλS(i) with S(i) = ∆

∑N
n=1 p

(i+1)
n (xn −

µ(i+1))(xn − µ(i+1))⊤, while η(i) ∈ R
Q is the vector with

components
((

(ω
(i)
q + ǫ)2 + 4m(i)

)1/2
− ǫ

)
1≤q≤Q

, where

m(i) = 1
2γDλ∆(p(i+1))⊤1N .

By leveraging the convergence properties of the proximal

regularization of the Gauss-Seidel method algorithm [21] and

the mathematical properties of (3), we were able to prove

that the sequence (a(i), b(i),p(i),µ(i),D(i))i∈N generated by

FIGARO algorithm has a finite length and it converges to a

critical point (â, b̂, p̂, µ̂, D̂) of the cost function F .

3. APPLICATION TO TWO-PHOTON MICROSCOPY

DATA

Let us now illustrate the validity of our fitting approach in

the processing of real two-photon microscopy data. Two-

photon fluorescence images are obtained from a commercial

multiphoton microscope dedicated to a routine use for bi-

ological multiphoton imaging (Olympus, BX61WI) with

a 25× water immersion microscope objective (Olympus,

XLPLN25×WMP, 1.05 numerical aperture). The working

station is coupled with a tunable femtosecond titan sapphire

laser source, (Chameleon Ultra II, Coherent Inc., 800 nm,

150 fs, 10 nm, 82 MHz, 30 mW). The characterization of the

instrument response function is tested experimentally thanks

to the imaging of microbeads presenting dimensions smaller

than the resolution spot. Here, spherical latex beads from

Molecular Probes with a diameter of 0.2 µm are involved, di-

luted into gelatin. It is important to emphasize that the small

diameter of the beads allows us to consider each observed one

as the (space-variant) instrument PSF at the bead center coor-

dinates. 230 stacks of images of 1600 × 1600 squared pixels

with resolution 0.053µm, spaced 0.1 µm apart, are acquired

with FluoView FV1200 software (Olympus). Forty volumes

of interest (VOIs) are selected, each of them corresponding

to the noisy and blurry observation of a single bead. Figure 1

illustrates the raw acquired volume (marginalized along Y

axis) and the position of selected VOIs.

We then apply the FIGARO method to fit a 3D Gaussian

model to each of them. Our processing method does not re-

quire any user intervention. In particular, an efficient χ2 strat-

egy is employed for automatically setting the regularization

parameter λ [25]. An example of 3D fitting result is displayed

in Fig. 2 (left). We also present in Table 1 some numerical

results obtained for the estimation of the center coordinates,

full width half maximum (FWHM), and orientation (Euler an-

gles) of the fitted Gaussian shapes, using our method, and the



Volume of Interest n◦1 n◦2 n◦3 n◦4

MetroloJ
Center (µm) (62.77, 18.59, 5.46) (41.62, 65.69, 5.50) (66.01, 0.35, 13.82) (10.24, 66.96, 10.46)
FWHM (µm) (0.32, 0.03, 0.05) (0.29, 0.03, 0.001) (0.028, 0.19, 0.1) (0.05, 0.04, 0.57)

FIGARO

Center (µm) (62.78, 19.19, 7.57) (41.71, 66.27, 6.10) (66.22, 1.03, 14.61) (10.29, 67.59, 11.72)
FWHM (µm) (0.192, 0.247, 1.275) (0.201, 0.307, 1.282) (0.198, 0.252, 1.539) (0.205, 0.259, 1.601)
Angles (◦) (73.1, 2.38) (67.3, 5.63) (87.2, 1.54) (105.6, 2.24)

Table 1. Example of fitting results on 4 VOIs for our approach, and the MetroloJ plugin from Fiji.

MetroloJ plugin of Fiji2. The latter does not allow to esti-

mate the orientation as it relies on a 1D Gaussian fitting on

the marginals along each 3 axis. The estimated center posi-

tions are quite similar for both methods, mainly because of the

small size of the VOIs. The high variability of the MetroloJ

results in terms of FWHM emphasizes the importance of be-

ing able to deal directly with 3D models, as well as the dif-

ficulty of coping with such high noise level. In contrast, our

method appears to be very robust to noise, as it allows to es-

timate precisely the width and the orientation axis of the PSF

in the 3D space. An analysis of our results for the whole set

of VOIs shows that, for this dataset and this range of depths,

the planar width of the PSFs does not vary much with respect

to the beads location. Here, the averaged FWHM of the esti-

mated Gaussian shapes is of (0.21, 0.27)µm in the XY plane,

which appears to be consistent with the theoretical limit of op-

tical planar resolution of 0.2µm for this emission wavelength

and numerical aperture. The axial PSF width is slightly in-

creasing when the depth of the bead center increases (Fig. 2

(right)), as it is expected from the optical theory [26], and the

averaged axial resolution is of 1.49µm which fits well with

the theoretical resolution limit of 1.5µm displayed in the lit-

erature [27]. The PSFs orientations we are measuring change

according to the beads location, and the tilt angle (i.e., an-

gle between principal eigenvector and Z axis) varies within a

range of [0.6, 7.7]◦ for this dataset. A standard analysis based

on 1D (or even 2D) fitting cannot have access to such a pre-

cise estimation of the tilt angle, yet of main importance for an

efficient processing of the microscopic images.

In order to highlight the impact of our results, we have

completed our analysis with a step of deblurring of a subpart

of the whole dataset, with size 200 × 200 × 50 voxels, cor-

responding to a field of view of 10 × 10 × 5µm. A constant

PSF was considered in this region, whose width and orienta-

tion are deduced from our fitting results by interpolation. The

deblurring step is performed using the OPTIMISM toolbox

from Fiji 3 [28]. Figure 3 illustrates one slice extracted from

the input and restored images. One can observe a high im-

provement in terms of resolution, which highlights the practi-

cal interest of our PSF fitting approach.

2http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:metroloj:start
3http://sites.imagej.net/Dbenielli/
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Fig. 2. Left: Example of 3D fitting result. Right: Evolution of the

estimated axial FWHM with the bead center depth.
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4. CONCLUSION

In this paper, a novel optimization approach called FIGARO
has been introduced for multivariate Gaussian shape fitting,
with guaranteed convergence properties. Experiments have
clearly illustrated the applicative interest of FIGARO, in the
context of PSF identification in two-photon imaging. The ver-
satility of FIGARO makes it applicable to a wide range of
applicative areas, in particular other microscopy modalities.
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[28] E. Chouzenoux, L. Lamassé, C. Chaux, A. Jaouen, I. Vanzetta,

and F. Debarbieux, “Approche variationnelle pour la
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