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ABSTRACT

In recent years, there has been a growing interest in prob-
lems in graph estimation and model selection, which all share
very similar matrix variational formulations, the most popu-
lar one being probably GLASSO. Unfortunately, the standard
GLASSO formulation does not take into account noise cor-
rupting the data: this shortcoming leads us to propose a novel
cost function, where the regularization function is decoupled
in two terms, one acting only on the eigenvalues of the matrix
and the other on the matrix elements. Incorporating noise in-
formation into the model has the side–effect to make the cost
function non–convex. To overcome this difficulty, we adopt a
majorization–minimization approach, where at each iteration
a convex approximation of the original cost function is min-
imized via the Douglas–Rachford procedure. The achieved
results are very promising w.r.t. classical approaches.

Index Terms— Majorization–minimization, Graphical
LASSO, Non–convex Optimization, Covariance Estimation,
Proximal Methods.

1. INTRODUCTION

In past years, various applied areas such as shape classifica-
tion [1], gene expression [2], model selection [3, 4], computer
vision [5], inverse covariance estimation [6, 7, 8, 9, 10], graph
estimation [11, 12, 13], social network and corporate inter-
relationships analysis [14], or brain network analysis [15]
have led to solving matrix optimization problems. A very
popular and useful example of such problems is the graphical
lasso approach, where the underlying cost functions reads
as the sum of (i) a minus log-determinant function, (ii) the
component–wise `1 norm (of the matrix entries) and (iii) a
linear trace term. Various algorithms have been proposed to
solve this problem, including the original GLASSO algorithm
[6] and some of its recent variants [16]. We can also mention
the dual block coordinate ascent method from [3], the SPICE
algorithm [17], the gradient projection method in [1], the Re-
fitted CLIME algorithm [18], various algorithms [9, 19, 20]
based on Nesterov’s smooth gradient approach [21], ADMM
approaches [8, 22, 23], an inexact Newton method [10], and
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interior point methods [13, 24]. One of the main weaknesses
of the graphical lasso model however is that it does not take
into account noise perturbing the data.
In this paper, we propose a new variational approach which
incorporates two key ingredients. First, we modify the data fi-
delity term so as to take into account the information about the
noise. In addition, we consider a more versatile regularization
form consisting of the sum of two different terms, one being a
symmetric spectral function while the other acts on the whole
matrix entries. Even if a convex regularization is chosen,
our formulation leads to a non convex objective function.
To tackle this problem, we propose to adopt a majorization–
minimization approach combined with a Douglas–Rachford
inner solver. We provide also a convergence result for the
proposed algorithm.
The present work is organized as follows: in Section 2 we
present the observation model, the proposed variational for-
mulation, and we show that it corresponds to a non convex
objective function; we describe our algorithm and discuss
its convergence properties as well as some theoretical results
allowing the use of the Douglas–Rachford algorithm. In Sec-
tion 3 we describe the numerical experiments used to validate
our approach, including comparisons with a state-of-the-art
graphical lasso algorithm. Section 4 draws conclusions on
the presented work.
Notations. Bold letters and bold capital letters refer to vec-
tors and matrices, respectively. Sn,S+n ,S++

n are the set of
symmetric, symmetric semi–definite positive and symmet-
ric definite–positive matrices. Γ0 (H) designates the set of
convex, proper and lower–semi–continuous functions on a
Hilbert spaceH.

2. PROPOSED MAJORIZE–MINIMIZE APPROACH

2.1. Problem Statement

Let us consider the following signal model [25]:

(∀i ∈ {1, . . . , N}) x(i) = As(i) + e(i) (1)

where A ∈ Rn×m withm ≤ n and, for every i ∈ {1, . . . , N},
s(i) ∈ Rm and e(i) ∈ Rn are realizations of mutually inde-
pendent identically distributed Gaussian multivalued random
variables with zero mean and covariance matrices E ∈ S++

m



and σ2Id, σ > 0, respectively. Hence, the covariance matrix
Σ of the observed signal in (1) is

Σ = A>EA + σ2Id. (2)

Such observation model is encountered in several practical
applications, e.g. in the context of “Relevant Vector Machine”
[26, 27]. The empirical covariance matrix of the x(i)s in (1)
is

S =
1

N

N∑
i=1

x(i)(x(i))>, (3)

which can be viewed as a rough approximation of (2), es-
pecially when N is small. Assuming that the noise level σ is
known, we propose here to estimate more tightly the precision
matrix, i.e., the inverse of the covariance matrix (2) from the
input data (x(i))1≤i≤N , by a penalized maximum likelihood
approach leading to the following minimization problem:

minimize
C∈S++

n

(
F (C) , f (C)+TS (C)+g0(C)+g1(C)

)
(4)

where

(∀C ∈ S++
n ) f (C) , log det

(
C−1 + σ2Id

)
(5)

(∀C ∈ S+n ) TS (C) , tr
((

Id + σ2C
)−1

CS
)
, (6)

the first (resp. second) function value being taken equal to
+∞ outside S++

n (resp. S+n ). A hybrid regularization term is
considered, which consists of g0 + g1. Function g0 is a spec-
tral symmetric function, i.e. (∀C ∈ Sn) g0(C) = ψ(Pd),
where P is any permutation matrix, d = [d1, . . . , dn]> is the
vector of eigenvalues of C, and ψ ∈ Γ0 (Rn). Moreover,
g1 ∈ Γ0 (Rn×n) acts on the whole matrix C. It is worth-
wile noticing that, when σ = 0, g0 = 0 and g1 = ‖ · ‖1,
(4) becomes equivalent to the optimization problem arising in
the famous GLASSO approach [6]. Our formulation presents
the advantage of accounting for a nonzero level of noise, and
various choices of regularization terms.

2.2. Minimization algorithm

The subsequent lemma reveals that the functionalF in (4) is a
difference of concave functions, which will be a key property
in the optimization approach we propose.

Lemma 1. Consider (4) with g0 and g1 in Γ0(Rn×n).

(i) f + g0 + g1 is a convex function.

(ii) The trace term TS is concave on S+n .

Sketch of proof. (i) is straightforwardly proved. (ii) is non
trivial. Using matrix differential calculus [28], we were able
to prove that the opposite of the Hessian of the trace term (6)
is a positive semi–definite linear operator on Sn.

According to Lemma 1, the cost function F is not convex,
thus we propose to adopt a Majorize-Minimize (MM) strategy
[29, 25, 30, 31] to solve (4). At each iteration ` ∈ N, we upper
boundF by a convex tangent approximation of it, considering
simply a linear approximation of the concave term. Then,
the next iterate is obtained by minimizing the approximate
functional, which yields the following scheme:

C(`+1) = argmin
C∈S++

n

[
f (C) + tr

(
∇TS

(
C(`)

)
C
)

+

g0(C) + g1(C)
]
.

(7)

In (7), ∇TS
(
C(`)

)
is the gradient of TS at C(`), which is

given by∇TS(C(`)) =
(
Id + σ2C(`)

)−1
S
(
Id + σ2C(`)

)−1
.

When g1 6= 0, the subproblem arising at each iteration usually
has no explicit solution. Nonetheless, these subproblems are
convex. We thus propose to employ the Douglas–Rachford
(DR) proximal algorithm ([32, 33, 34]) to solve each inner
subproblem. In the framework of (7), the DR method min-
imizes the sum of f + tr

(
∇TS

(
C(`)

)
(·)
)

+ g0 and g1 by
alternately computing proximity operators of each of these
two functions. Let us recall the definition of the proximity
operator of a function h ∈ Γ0 (Rn×n): let γ > 0, the proxim-
ity operator of γh at C will be denoted by proxγh

(
C
)

and
corresponds to the unique minimizer of γh + ‖ · −C‖2F/2,
where ‖ · ‖F is the Froebenius norm.
Most practical choices for g1 allow to compute its proximity
operator via an explicit formula, while the subsequent lemma
reveals a practical way to compute the proximity operator of
the other term appearing in (7).

Lemma 2. Let γ ∈]0,+∞[ and C ∈ Sn. For every d =
[d1, . . . , dn]> ∈ Rn, let ϕ(d) =

∑n
j=1 log

(
(1 + σ2dj)/dj

)
if d ∈]0,+∞[n and +∞ otherwise. Let g0 ∈ Γ0 (Rn×n) be
the symmetric spectral function associated with ψ ∈ Γ0 (Rn)
such that domϕ ∩ domψ 6= ∅. Let λ ∈ Rn and U
be an orthogonal matrix such that C − γ∇TS

(
C(`)

)
=

U Diag(λ)U>. Then

proxγ(f+tr(∇TS(C(`))·)+g0)(C) =

U Diag
(
proxγ(ϕ+ψ) (λ)

)
U>.

The complete proposed procedure is described in Algo-
rithm 1, whose convergence is guaranteed by the next theo-
rem. The rather technical proof is omitted due to the lack of
space.

Theorem 1. Let (C(`))`≥0 be a sequence generated by (7).
Assume that dom f ∩ dom g0 ∩ dom g1 6= ∅, f + g0 + g1
is coercive, and {C ∈ Sn | F(C) ≤ F(C(0))} is included in
the relative interior of dom g0 ∩ dom g1. Then, the following
properties hold:

1. (F(C(`)))`≥0 is a decaying sequence converging to
F̂ ∈ R.



Algorithm 1 MMDR: Majorization–Minimization algorithm
with Douglas–Rachford inner steps

1: Set γ > 0,C(0) ∈ Sn, let S ∈ S+
n be the given data

2: for l = 0, 1, . . . do
3: Set C(`,0) = C(`)

4: for k = 0, 1, . . . do
5: Compute U(k),Λ(k) = Diag(λ(k)) such that

C(`,k) + γ∇TS(C(`)) = U(k)Λ(k)
(
U(k)

)>

6: d(`,k+
1
2 ) = proxγ(ϕ+ψ)

(
λ(k)

)
7: C(`,k+ 1

2 ) = U(k) Diag
(
d(`,k+

1
2 )
)(

U(k)
)>

8: Choose αk ∈ [0, 2)

9: Y(`,k) = proxγg1

(
2C(`,k+ 1

2 ) −C(`,k)
)

10: C(`,k+1) = C(`,k) + αk
(
Y(`,k) −C(`,k+ 1

2
)
)

11: end for
12: C(`+1) = C(`,k+ 1

2
)

13: end for

2. (C(`))`≥0 has a cluster point.

3. Every cluster point Ĉ of (C(`))`≥0 is such thatF(Ĉ) =

F̂ and it is a critical point of F , i.e. −∇f(Ĉ) −
∇TS(Ĉ) ∈ ∂(g0 + g1)(Ĉ).

This theorem is in the spirit of asymptotic results in [35,
36]. However, unlike existing results, the differentiability of
g0 + g1 is not required, which is of main importance in sparse
matrix estimation problems.

3. NUMERICAL EXPERIMENTS

Let us now evaluate the performance of the proposed ap-
proach. We test our MMDR Algorithm on datasets generated
with the code available on Boyd’s webpage1: a sparse preci-
sion matrix C0 of dimension n× n is randomly created, then
its inverse Σ0 is used to generate N realizations (x(i))1≤i≤N
of a Gaussian random variable with zero mean and covariance
Σ0. Gaussian noise with variance σ2 is added to these real-
izations, hence the final covariance matrix Σ fulfills exactly
(2), with Σ0 = A>EA.
The settings of our experiments are n = 100, N = 10000,
the number of nonzero elements in C0 is 10; g1 = µ1‖ · ‖1,
µ1 > 0 and g0(C) = µ0R1

(
C−1

)
, where R1 is the

Schatten–1–norm (also called nuclear norm) and µ0 > 0.
The parameters µ0 and µ1 allow us to adjust the incidence of
the regularization functionals on the final reconstruction. In
Figure 1, the results obtained in the presence of a high noise
level σ = 0.5 by setting µ0 = 0.07, µ1 = 0.03, γ = 1 are
depicted. The outer cycle is stopped as soon as the relative

1http://stanford.edu/˜boyd/papers/admm/covsel/
covsel_example.html

difference of the objective function F reaches a tolerance
of 10−8, while the inner DR iterations are stopped with the
same criterion on the majorant function and with a tolerance
of 10−10. The parameters were set so as to obtain the best
relative mean square error rmse on the covariance matrix,
i.e. rmse = ‖Σ0 − Σrec‖F/‖Σ0‖F, where Σrec is the re-
constructed covariance matrix. Panels (a-b) in Figure 1 are

(a) Σ0

(b) Σrec

Fig. 1. Results for σ = 0.5. Panel (a) and (b) contain the vi-
sual inspection of the true covariance matrix and of the recon-
structed one, respectively. The scale–color used is the same
for both images.

useful to visually compare the true covariance matrix Σ0 and
the recovered one Σrec: the result appears satisfactory, and
the rmse achieved is 0.1113, while the initial rmse of the
empirical covariance matrix is 0.6276.
We now compare the performance of MMDR with a GLASSO
implementation based on an Alternating Direction of Multi-
pliers Method (ADMM) described in [23]. In the latter case,
the information about the noise is not taken into account in
the model. We generate different datasets for various noise
levels (σ ∈ {0.1, 0.3, 0.5, 0.7}). Moreover, we evaluate also
a simpler variational model than (4), in which we keep the
splitting of the regularization functional into g0 + g1 but no
information about noise is incorporated into the model, i.e.
σ is set to 0 in (4): applying the DR algorithm to the result-



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Noise level σ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
P

R

MMDR

DR

GLASSO

Fig. 2. Behaviour of the FPR w.r.t. noise level. Comparison
for three methods: Dotted line refers to DR implementation,
dashed one to GLASSO algorithm, and finally solid line to
MMDR approach. The latter one allows to achieve the best
estimation of the support of the precision matrix for increas-
ing noise level.

ing problem provides the solution. We are performing this
further comparison to check whether including information
about noise plays a critical role in terms of matrix recovery.
The error measurement employed is the False Positive Rate
(FPR), i.e. the percentage of nonzero entries erroneously in-
cluded in the support of the recovered matrix. The True Posi-
tive Rate, i.e. the percentage of the nonzero entries correctly
recognized, is 100% for each method in this example. Figure
2 compares the FPR provided by each algorithm (the non
monotonic behaviour is due to the fact that the regularization
parameters are set to minimize the relative mean square error
in the covariance matrix estimation). The MMDR approach
obviously improves the quality of the support estimation: it
outperforms GLASSO which leads to poorer results as the
noise corrupting the data becomes stronger. Moreover, it is
clear that including the noise information into the variational
model allows a more accurate reconstruction to be achieved.
The improvement in terms of covariance matrix estimation is
especially significant for large values of σ.

4. CONCLUSIONS

In this work, we have proposed an extension of the celebrated
GLASSO formulation. Our approach is designed to be ro-
bust to the presence of noise. In addition, it allows a wide
range of regularization functions to be employed. An efficient
MM algorithm grounded on the use of the Douglas-Rachford
method has been proposed to solve the associated non convex
optimization problem and its convergence properties have
been investigated. The effectiveness of our method has been
shown on a standard dataset.
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