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1 CVN, CentraleSupélec, INRIA, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
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Abstract—The geometry-texture decomposition of images pro-
duced by X-Ray Computed Tomography (CT) is a challenging
inverse problem which is usually performed in two steps: re-
construction and decomposition. Decomposition can be used for
instance to produce an approximate segmentation of the image,
but this one can be compromised by artifacts and noise arising
from the acquisition and reconstruction processes. We propose a
geometry-texture decomposition based on a TV-Laplacian model,
well-suited for segmentation and edge detection. The correspond-
ing joint reconstruction and decomposition task from CT data is
then formulated as a convex constrained minimization problem.
We use our recently introduced proximal interior point method
to solve this inverse problem in a reliable manner. Numerical
experiments on realistic images of material samples illustrate
the practical efficiency of the proposed approach. Our algorithm
indeed compares favorably with a state-of-the-art method.

Index Terms—Geometry-texture decomposition, interior point
method, proximal algorithm, computed tomography

I. INTRODUCTION

Decomposing a natural image xt+g into two components,
namely a texture xt and a geometry xg such that xt+g =
xt + xg , provides solutions to various tasks in image pro-
cessing such as denoising [1], clustering and classification
[2] [3], texture segmentation [4], or digital inpainting [5].
Traditionally, the geometry represents a piecewise smooth
version of the image, enabling large object detection, in
contrast with the textural component which depicts details and
local components with higher spatial frequencies. For instance,
in the context of noise removal, the texture represents the
noise contribution and consequently shares the same statistical
properties, while the geometry can be extracted using the total
variation semi-norm [1] [6]. The textural component can also
capture meaningful features of an image, corresponding for
example to periodic elements, edges, or blobs. A large number
of models can be found in the literature regarding the texture
extraction using variational approaches, based on `1 or `2
regularizations, wavelet decomposition or the Hölder exponent
to name only a few [7]–[10]. In this paper, we focus on the
use of the Laplacian detector, which has been known for a
long time to be useful for texture element extraction, more
precisely for edge and blob detection [11]–[13].
In the specific case of material image analysis, the geometry-
texture decomposition aims at classifying material compo-
nents. However, this task can be compromised by the very na-
ture of the samples which can exhibit erosion or microporosity,

blurring the border between the different elements. Another
issue is the X-Ray Computed Tomography (CT) acquisition
procedure used for this type of images. The latter provides
a fast non-destructive scanning technique [14]. It consists in
measuring the absorption of an object along a sampled grid
of size L for Nθ angular positions. This acquisition process
can be modelled by a sparse projection operator H ∈ Rm×n,
where n is the number of pixels of the absorption image and
m = L × Nθ. Reconstructing the image from the measured
data y = Hxt+g (or a noisy version of it), called sinogram,
is a challenging inverse problem [15] which involves ringing
artifacts, contrast issues due to beam hardening, and noise
caused by sensor motion [16]. These artifacts can be partially
removed by improving scanning techniques or by increasing
the number of measurements but this comes at a price and
lots of applications can benefit from a faster subsampled
CT acquisition. Reconstructing the image from the acquired
data is a heavy processing step which can introduce a bias
in the subsequent segmentation task [17]. Hence, there is a
need for a reliable technique that can allow performing both
reconstruction and segmentation on CT data in a reasonable
time.
Joint geometry-texture decomposition and tomographic recon-
struction can be formulated as a large-scale convex optimiza-
tion problem under constraints. Interior point approaches have
proven to be very useful and efficient to solve constrained
optimization problems [18] [19]. The main idea behind these
methods is to replace the constrained problem by an uncon-
strained minimization problem where the objective function
is augmented with a so-called barrier term which goes to
infinity as the variable approaches the border of the feasible
domain. One advantage of interior point algorithms is that
they guarantee feasibility of every iterate, which can boost
convergence. However, most of interior point approaches rely
on second-order methods [20]–[22] and thus require the objec-
tive function to be differentiable. In particular this framework
excludes the use of total variation, which is at the core of
segmentation variational models.
In this article, we introduce a TV-Laplacian geometry-texture
model and propose a compact formulation to perform joint
reconstruction and decomposition from tomographic data un-
der some bounded measurement error. The corresponding
constrained convex optimization problem is solved using a



recently introduced proximal interior point method that can
handle non-differentiable terms in the objective function. The
proposed optimization method leads to conclusive results for
images of materials. This article is organized as follows: Sec-
tion II details the geometry-texture decomposition model and
the corresponding inverse problem; the optimization method
is described in Section III; Section IV presents numerical
experiments carried out on real data and comparison to a state-
of-the-art algorithm; a short conclusion is drawn in Section V.

II. PROBLEM FORMULATION

A. Notation and definitions

Let In ∈ Rn×n, 0n ∈ Rn, and 1n ∈ Rn be the identity matrix,
the zero vector, and the one vector, respectively. We denote
by Sn++ the set of positive definite matrices in Rn×n. Let
Γ0(Rn) denote the set of functions which are proper, convex,
lower semi-continuous on Rn and take values in R ∪ {+∞}.
The proximity operator [23] is defined as follows: for every
A ∈ Sn++, f ∈ Γ0(Rn), and x ∈ Rn,

proxAf (x) = arg min
y∈Rn

(
1

2
‖y − x‖2A + f(y)

)
. (1)

B. Problem formulation

We propose to decompose an image into two parts: a geometry
and a texture. The geometry is represented by a piecewise
constant image which can be viewed as an approximation to
the segmented map. Conversely, the texture represents the fast-
spatially varying components, namely the edges and textural
components of the natural image, the residual noise, and
artifacts from the tomography measurement. Assuming that
the input data y ∈ Rm is a CT sinogram with a measure
uncertainty bounded by χ > 0, the following formulation is
proposed for the geometry-texture decomposition:

P0 : minimize
(xt,xg)∈Rn×Rn

1
2‖Fx

t‖22 + λTV(xg)

subject to xt + xg ∈ [0, 1]n

‖H(xt + xg)− y‖∞ ≤ χ
(2)

where xt is the texture and xg is the geometry, λ > 0 is the
regularization parameter, TV is the isotropic total variation
semi-norm [1], H ∈ Rm×n is the discrete Radon projection
operator, F = In −∆ ∈ Rn×n, ∆ ∈ Rn×n is the Laplacian
associated with the 2D kernel:0 1 0

1 −4 1
0 1 0

 , (3)

padded with circulant assumption. The first term in the crite-
rion enforces edge detection in the texture while the geometry
is made smooth thanks to the total variation regularization. The
first set of constraints corresponds to the bounds on the pixel
values of the natural image xt+g = xt +xg , while the second
constraint is the data-fitting term which can be decomposed
into 2 × m linear inequalities. We introduce the notation
x = [(xt)> (xg)>]>, and since the constraints are linear, we
can define C ∈ R2(n+m)×2n and c ∈ R2(n+m) such that x

satisfies the constraints if and only if Cx+c ∈]−∞, 0]2(n+m)

where

C =


−In −In
In In
−H −H
H H

 and c =


0n
−1n

−χ1m + y
−χ1m − y

 . (4)

III. OPTIMIZATION METHOD

We propose to solve the constrained problem P0 via a se-
quence (Pµj )j∈N of unconstrained subproblems parametrized
by the barrier coefficient µj and defined as follows:

Pµj : minimize
(xt,xg)∈Rn×Rn

1

2
‖Fxt‖22+λTV(xg)+µjb(Cx+c), (5)

where b is the logarithmic barrier: (∀z = (zi)1≤i≤2(n+m) ∈
R2(n+m)) b(z) = −

∑2(m+n)
i=1 ln(−zi) if z ∈]−∞, 0[2(n+m),

+∞ otherwise. As the subproblems (Pµj )j∈N do not have an
explicit solution, we solve them approximately using proximal
gradient iterations, leading to the generic Proximal Interior
Point Algorithm (PIPA) introduced in [24], the specific imple-
mentation of which is detailed below.

Algorithm 1: Proximal Interior Point Algorithm (PIPA)
Let {(εi,j)j∈N}i∈{1,2,3}, (µj)j∈N be strictly positive

sequences converging to 0 such that (∀i ∈ {1, 2, 3})
lim
j→∞

εi,j/µj = 0;

Take δ ∈]0, 1[, θ ∈]0, 1[ and γ̄ > 0;
Initialize x0,0 ∈ R2n such that Cx0,0 + c ∈]−∞, 0]2(n+m);
for j = 0, 1, . . . do

for k = 0, 1, . . . do
Choose Aj,k according to Condition 3.1;
for l = 0, 1, . . . do

x̃lj,k =prox
Aj,k

γ̄θlλTV

(
xj,k − γ̄θlA−1

j,k

[(
F>Fxtj,k

0n

)
−µjC>Diag{Cxj,k + c}−112(m+n)

])
Stop if (6) is satisfied;

end
xj,k+1 = x̃lj,k and γj,k = γ̄θl;
Stop if (7)-(9) are satisfied;

end
xj+1,0 = xj,k+1;

end

Given a fixed barrier parameter µj > 0, Pµj
is solved

approximately via several forward-backward iterations [25]
[26] which include a gradient step on the barrier and on
the texture regularization, and a proximal step on the total
variation term. In order to accelerate the convergence rate, the
proximity operator is associated to a preconditioning matrix
Aj,k which should satisfy Condition 3.1 below. The choice
for this matrix is detailed in Section III-B.

Condition 3.1: For every j ∈ N (∃(νj , ν̄j) ∈]0,+∞[2) such
that (∀k ∈ N) Aj,k ∈ Sn++ and νjIn � Aj,k � ν̄jIn.



Since the barrier is not Lipschitz differentiable, a linesearch is
performed to find an appropriate stepsize γj,k [27] [28]. The
backtracking is based on the stopping criterion given by

1

2
‖F (x̃lj,k − xj,k)t‖22 + µj

(
b(Cx̃lj,k + c)− b(Cxj,k + c)

)
+ µj

2(m+n)∑
i=1

(C(x̃lj,k − xj,k))i

(Cxj,k + c)i
≤ δ

γ̄θl
‖x̃lj,k − xj,k‖2Aj,k

.

(6)

The barrier parameter µj is decreased as soon as the following
accuracy conditions are met:

‖xj,k − xj,k+1‖ ≤ ε1,j (7)
1

γj,k
‖Aj,k(xj,k − xj,k+1)‖ ≤ ε2,j (8)

2(n+m)∑
i=1

∣∣∣∣ (Cxj,k+1 + c)i
(Cxj,k + c)i

− 1

∣∣∣∣ ≤ ε3,j . (9)

As stated in [24], the sequence (xj,0)j∈N produced by PIPA
is bounded and every cluster point of it is a solution to P0.

A. Initialization

The proposed interior point method must be initialized in
the strict interior of the feasible domain. To this aim, we
initialize xt with the zero vector and follow the method of
[29, Chap. 11.4] for xg . We consider the minimization of the
maximal infeasibility:

PI : minimize
(s,xg)∈R×Rn

s

subject to s ≥ 0, xg ∈ [0, 1]n

‖Hxg − y‖∞ ≤ χ+ s

(10)

which is solved using a standard primal-dual interior point al-
gorithm. This iterative process is stopped once the constraints
in P0 are strictly satisfied or when s is sufficiently small. In
all the numerical experiments we performed, we were able
to initialize our method using this procedure in a reasonable
time.

B. Diagonal preconditioning matrix

For the traditional forward-backward algorithm, a suitable pre-
conditioning matrix Aj,k can be chosen as an approximation
of the Hessian of the differentiable term in (5) at the current
iterate [30], which, in our case, is of the form(

F>F +G(xj,k) G(xj,k)
G(xj,k) G(xj,k)

)
(11)

where

G(xj,k) = µjD1(xj,k) + µjH
>D2(xj,k)H (12)

D1(xj,k) = Diag{xt+gj,k }
−2 + Diag{1n − xt+gj,k }

−2 (13)

D2(xj,k) = Diag{Hxt+gj,k + χ1m − y}−2

+ Diag{−Hxt+gj,k + χ1m + y}−2.
(14)

Given the huge size and ill-conditioning of H , the inverse
of H>D2(xj,k)H is hardly computable. Hence, instead of
using the full Hessian we propose to rely on the diagonal
approximation proposed in [31] for G(xj,k), so that:

Aj,k =

(
F>F +D(xj,k) D(xj,k)

D(xj,k) D(xj,k)

)
(15)

where

D(xj,k) = µjD1(xj,k) + µjDiag{P>d2(xj,k)} (16)

and d2(xj,k) ∈ Rm is the diagonal of D2(xj,k), P ∈ Rm×n
with (∀(i, `)) [P ]i,` = [H]i,`

∑n
q=1[H]i,q . The operator Aj,k

is easily invertible since D(xj,k) is diagonal.

IV. NUMERICAL RESULTS AND DISCUSSION

The efficiency of the proposed approach is illustrated through
the reconstruction and decomposition of three natural images
from material samples, depicted in Figure 1. These images
of size n = 128 × 128 present various textural elements and
artifacts. The discrete Radon operator H ∈ Rm×n corresponds
to projections along Nθ = 180 angular positions on a grid of
size L = 128, so that m = 180×128. To mimick measurement
uncertainty, the sinograms are corrupted with a uniform noise
of amplitude χ = 1. The regularization parameter λ is chosen
for each image, such that it leads to satisfactory geometry
estimates: it is fixed to 0.6 for the glass sample, 0.1 for the
AlCu data, and to 0.1 for the basalt image. Note that the
correlation criterion defined in [7] could also have been used
to assess the decomposition. The proposed algorithm PIPA
is compared to the standard Alternating Direction Method of
Multipliers (ADMM) [32]. Since the latter does not need to be
initialized in the feasible domain, we run it with two different
initializations, namely the one that we use for PIPA (labeled
ADMM1) and the zero vector (labeled ADMM2).
The methods are implemented on Matlab R2016b and the
simulations are performed on a desktop computer with an Intel
Xeon 3.2 GHz processor and 16 GB of RAM.

A. Results

The performance of the different optimization algorithms is
evaluated in terms of the normalized distance from the current
iterate xj,k to the final point x∞, where x∞ is obtained after
running the algorithms for 20 000 s. The corresponding plots

0 0.5 1 0 0.2 0.4 0.6 0.8 0 0.5 1

Figure 1. Natural images. (left and middle) Phase-separated barium borosili-
cate glass and AlCu sample, resp., imaged at the ESRF synchrotron (courtesy
of David Bouttes). (right) Colorado Plateau basalt with bubbles (courtesy of
Alexander Proussevitch [33])
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Figure 2. Glass sample: (left) distance from the current iterate to the final
point, (right) distance to the constraints with time.
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Figure 3. Distance from the current iterate to the final point: (left) AlCu data,
(right) basalt sample.

can be found on Figure 2 (left) and Figure 3. Note that the
time needed to solve PI for initializing PIPA and ADMM1 is
included into these graphs, which corresponds to a duration
of about 115 seconds for all three tests.
Moreover, Figure 2 (right) represents the distance from the
iterates to the constraints for ADMM1 and ADMM2 where
d1(xj,k) and d2(xj,k) are the distances from xt+gj,k to [0, 1]n

and from Hxt+gj,k − y to [−χ, χ]m, respectively.
The proposed method efficiency is also assessed according to
the visual results given by the decomposition. We consider
that PIPA has almost converged when ‖xj,k − x∞‖/‖x∞‖ is
below 0.01. This accuracy is reached after 20 min, 39 min and
44 min for the glass, AlCu and basalt data, respectively. The
corresponding texture, geometry and reconstructed images can
be found on Figure 4. The quality of the reconstructed images
can be evaluated according to the signal to noise ratio (SNR)
defined by SNR = −20 log10(‖xt+gj,k − x̄‖/‖x̄‖) where x̄ is
the groundtruth (see Figure 1). The SNR for Figure 4 (last
column) is equal to 14.7 dB, 27.8 dB and 25.7 dB (from top
to bottom).

B. Discussion

In terms of optimization speed, as one can see on Figures 2
(left) and 3, the proposed algorithm converges faster to its
limit point. In addition, both PIPA and ADDM1 perform better
than ADMM2, which shows that initializing the algorithms
with the solution obtained by solving PI is significantly
beneficial. It should also be noted that PIPA and ADMM
do not follow the same path: as opposed to the proposed
interior point algorithm, ADMM does not produce feasible
iterates (even if they converge to one). This is confirmed by
Figure 2 (right). Regarding Figure 4, the proposed decomposi-

-0.2 0 0.2 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
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Figure 4. Visual results obtained with PIPA. (rows from top to bottom)
Glass sample, AlCu, basalt. (columns from left to right) Texture, geometry,
reconstruction: sum of texture and geometry.

tion scheme provides visually satisfactory results. For the glass
sample, the geometry, which is free of the noisy background
and of the textural elements on the borders between the two
materials, approximates well the expected segmentation, while
the texture captures the edges between the different areas of
the sample. The AlCu data is characterized by ringing artifacts
which are almost removed from the geometry. One may expect
that the analysis of this sample content would be improved
by combining information from the geometry and the texture
which highlights significantly the edges between the different
blobs. The basalt image is affected by vertical artifacts along
with blur. As expected, these vertical lines can be found in the
resulting texture, leaving the geometry smooth and relevant for
a two-phase classification step.

V. CONCLUSION

In this work, we proposed a TV-Laplacian geometry-texture
model for image reconstruction from tomographic measure-
ments. We formulated the joint decomposition and tomo-
graphic reconstruction task as a constrained optimization prob-
lem. A novel proximal interior point algorithm was proposed
to solve this problem, that compares favorably with ADMM in
terms of convergence speed. In addition, it allows meaningful
decomposition results to be obtained when tested on realistic
test images of materials. One possible improvement of our
approach could be to consider more sophisticated non-linear
constraints and to employ a data-fitting term better adapted to
the noise statistics encountered in given acquisition processes.
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propagation reconstruction for discrete tomography,” Inverse Problems,
vol. 29, no. 3, p. 035003, 2013.

[18] M. H. Wright, “Interior methods for constrained optimization,” Acta
Numerica, vol. 1, pp. 341–407, 1991.

[19] J. Gondzio, “Interior point methods 25 years later,” European Journal
of Operational Research, vol. 218, no. 3, pp. 587–601, 2012.

[20] A. Forsgren, P. E. Gill, and M. H. Wright, “Interior methods for
nonlinear optimization,” SIAM Review, vol. 44, no. 4, pp. 525–597, 2002.

[21] P. Armand, J. C. Gilbert, and S. Jan-Jégou, “A feasible BFGS interior
point algorithm for solving convex minimization problems,” SIAM
Journal on Optimization, vol. 11, no. 1, pp. 199–222, 2000.

[22] S. Bonettini and T. Serafini, “Non-negatively constrained image deblur-
ring with an inexact interior point method,” Journal of Computational
and Applied Mathematics, vol. 231, no. 1, pp. 236–248, 2009.

[23] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone
operator theory in Hilbert spaces. Springer New York, 2011.

[24] M.-C. Corbineau, E. Chouzenoux, and J.-C. Pesquet, “PIPA: a new
proximal interior point algorithm for large-scale convex optimization,”
in Proc. of the 43rd International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2018). Calgary, CAN: IEEE, 15-20 April
2018 (forthcoming).

[25] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-
backward splitting,” Multiscale Modeling & Simulation, vol. 4, no. 4,
pp. 1168–1200, 2005.

[26] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal
processing,” in Fixed-point algorithms for inverse problems in science
and engineering. Springer, 2011, pp. 185–212.

[27] E. Chouzenoux, S. Moussaoui, and J. Idier, “Majorize–minimize line-
search for inversion methods involving barrier function optimization,”
Inverse Problems, vol. 28, no. 6, p. 065011, 2012.

[28] S. Salzo, “The variable metric forward-backward splitting algorithm un-
der mild differentiability assumptions,” SIAM Journal on Optimization,
vol. 27, no. 4, pp. 2153–2181, 2017.

[29] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[30] S. Becker and J. Fadili, “A quasi-newton proximal splitting method,” in
Proc. of the 25th Advances in Neural Information Processing Systems
Conference (NIPS 2012), Lake Tahoe, USA, 3-8 December 2012, pp.
2618–2626.

[31] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, “Variable metric forward–
backward algorithm for minimizing the sum of a differentiable function
and a convex function,” Journal of Optimization Theory and Applica-
tions, vol. 162, no. 1, pp. 107–132, 2014.

[32] S. Setzer, G. Steidl, and T. Teuber, “Deblurring Poissonian images by
split Bregman techniques,” Journal of Visual Communication and Image
Representation, vol. 21, no. 3, pp. 193–199, 2010.

[33] A. A. Proussevitch, D. L. Sahagian, and W. D. Carlson, “Statistical
analysis of bubble and crystal size distributions: application to Colorado
Plateau basalts,” Journal of Volcanology and Geothermal Research, vol.
164, no. 3, pp. 112–126, 2007.


