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ABSTRACT

Reducing acquisition time is a crucial issue in MRI especially
in the high resolution context. Compressed sensing has faced this
problem for a decade. However, to maintain a high signal-to-noise
ratio (SNR), CS must be combined with parallel imaging. This leads
to harder reconstruction problems that usually require the knowl-
edge of coil sensitivity profiles. In this work, we introduce a calibra-
tionless image reconstruction approach that no longer requires this
knowledge. The originality of this work lies in using for reconstruc-
tion a group sparsity structure (called OSCAR) across channels that
handles SNR inhomogeneities across receivers. We compare this re-
construction with other calibrationless approaches based on group-
LASSO and its sparse variation as well as with the auto-calibrated
method called `1-ESPIRiT. We demonstrate that OSCAR outper-
forms its competitors and provides similar results to `1-ESPIRiT.
This suggests that the sensitivity maps are no longer required to per-
form combined CS and parallel imaging reconstruction.

Index Terms— Compressed Sensing, Parallel MRI, Group
Sparsity, Proximal algorithm

1. INTRODUCTION

Context. Magnetic resonance imaging (MRI) is a powerful tool
to non-invasively probe soft-tissues. However, MRI suffers from
long acquisition time, especially for T2*-weighted high-resolution
imaging where both long repetition time and echo time hold. Com-
pressed Sensing (CS) has been proposed to shorten scan time by col-
lecting fewer measurements in the Fourier domain or k-space [1, 2].
This theory relies on three ingredients: (i) the existence of a sparse
or compressible representation of images; (ii) the ability to design
incoherent sampling schemes with respect to this sparse represen-
tation and finally (iii) nonlinear reconstruction that promotes spar-
sity such as `1 minimization under data consistency constraints. CS
has been successfully applied to MRI [3], first using Poisson-Disk
sampling and then considering more efficient non-Cartesian trajec-
tories (e.g. spirals, radial [4], Sparkling [5, 6] ...) that allow to
break down the coherence barrier [7, 8] using 2D variable density
sampling [9, 8]. The resulting acceleration factor (e.g. 6 to 10) is
larger than those resulting from standard parallel imaging (PI) accel-
eration methods. However, for a given image resolution, the max-
imum acceleration factor depends on the input Signal-to-Noise Ra-
tio (SNR) [10]. Therefore, to ensure a certain level of SNR, CS has
been combined with multiple receiver coils (e.g. parallel imaging or
PI [11]). In this context, many algorithms have been proposed to re-
construct MR images from subsampled measurements collected over

multichannel coils. Those algorithms can be split into four different
categories.
Related works. The first class formulates the problem in the
original space, the k-space. Most of those methods are based on
the minimization of an inconsistency term between a region of
Auto-Calibrating Signal (ACS region), where the signal is acquired
respecting the Nyquist-Shannon criteria and the missing samples
which are estimated as in Generalized Auto-calibration Partially Par-
allel Acquisitions GRAPPA method [12, 13]. Other recent methods
impose low-rank constraints in the k-space such as LORAKS [14],
they have been successfully applied to MR reconstruction. In gen-
eral, k-space based reconstructions have the advantage to be more
robust to motion. However, their generalization to non-Cartesian
sampling schemes is more challenging and implies the use of grid-
ding operator. However, this can be computationally demanding
and degrades the image quality. The second class of methods is
model-based and tries to model the spatial encoding of the chan-
nels sensitivity (SENSE) [15] to recover a single image where the
channels’ reception profiles have been eliminated. The CS-SENSE
reconstruction methods have been introduced in [16] and further
extended to non-Cartesian sampling in [17]. Those methods can in-
clude correction to off-resonance artifacts, but they require explicit
knowledge of sensitivity matrices. To estimate the latter, two kinds
of approaches have been proposed: first, blind methods estimate
both sensitivity profiles and the unknown MR image to be recon-
structed [12, 18, 19]. Second, self-calibrating sequential approaches
first extract sensitivity profiles using a k-space region where the
measurements have been fully collected or at least a heavily sam-
pled region (k-space center) [20, 21, 22]. The third category is a
hybrid version between SENSE and GRAPPA-like methods charac-
terized by an inconsistency term between the ACS region and the
explicit knowledge of sensitivity matrices (e.g. PRUNO [23] or `1-
ESPIRiT [21]). Finally, the last class of methods is calibrationless
and characterized by the use of joint sparsity. The reconstruction
problem is solved as an inverse problem [24, 25]. The latter presents
the advantage of avoiding the acquisition of the ACS region and
estimation of sensitivity matrices. Such methods have improved re-
covery guarantees compared to classical CS model as demonstrated
in [26, 27, 28].
Goals and contributions. In this work, we will focus on the
last class and we will compare three different regularization terms
that promote joint sparsity: the group-LASSO [24], sparse group-
LASSO [29], and Octagonal Shrinkage and Clustering Algorithm
for Regression (OSCAR) [30]. To the best of our knowledge, it
is the first time that OSCAR penalization has been applied in to a
reconstruction problem. Moreover, we rely on a generic primal-



dual optimization algorithm that solves all penalizations in a unified
framework. Our results on ex vivo baboon brain data collected at
7 Tesla demonstrate that calibration-less reconstruction methods
may achieve the same image quality as (or slightly better than)
auto-calibrated ones.

2. PROBLEM STATEMENT

Variational formulation. Let N be the resolution of the recov-
ered image per channel, let L be the number of channels used to
acquire the NMR signal, and let M be the number of measurements
in the Fourier domain with M < N . We denote by y ∈ CM×L

the acquired NMR signal and by y` ∈ CM the `
th

channel-specific
dataset. Let x = [x1, . . . , xL] ∈ CN×L be the reconstructed MR
images such that x` ∈ CN is associated with the `

th
channel. The

image reconstruction problem reads as follows:

x̂ = arg min
x∈CN×L

{1

2

L∑
`=1

σ−2
` ‖fΩ(x`)− y`‖22 + g(Tx)

}
, (1)

where fΩ is the forward under-sampling Fourier operator. In the case
of Cartesian sampling, fΩ(x`) = ΩFx` with F the 2D fast Fourier
transform (FFT) and Ω the binary under-sampling mask defined over
the discrete grid. In non-Cartesian settings, fΩ refers to nonequis-
paced or nonuniform FFT [31, 32] and Ω stands for the continuous
support of the measurements in k-space. T ∈ CNΨ×N is a linear
operator related to a multiscale decomposition Ψ with output size
NΨ (e.g., wavelet transform). Let Γ0(CNΨ×L) be the set of convex,
proper, lower semi-continuous functions on CNΨ×L that take val-
ues in R ∪ {+∞}. Function g ∈ Γ0(CNΨ×L) is the regularization
term that promotes sparsity of the wavelet coefficients across chan-
nels. This formulation enables the use of over-complete dictionaries
as will be done in this work. In this work, we will rely on a proximal
minimization method and investigate the most suitable choice for
g. Thus we mainly focus on convex proximal-friendly penalty terms
that can be handled using the same generic optimization algorithm.
Primal-dual optimization algorithm. Here we summarize the
primal-dual optimization method proposed by Condat-Vũ [33, 34,
35]. We aim to find:

x̂ ∈ argmin
x∈CN×L

[f(x) + g(Tx)] (2)

where: (i) f is convex, differentiable on CN×L and its gradient is
β-Lipschitz; (ii) g ∈ Γ0(CNΨ×L) with a closed form proximity
operator. We recall that this operator is defined as:

proxg(z) = argmin
v∈CNΨ×L

1

2
‖z − v‖2 + g(v) (3)

According to [33, Theorem 3.1], Algorithm (1) will converge to
a solution of Eq. (2) if 1

τ
− κ‖T ‖2 ≥ β

2
where ‖T ‖ is the spectral

norm of the T operator
The Lipschitz constant β is related to the norm of the linear operator
fΩ, namely β =

∑L
`=1 σ

−2
` ‖fΩ‖2. In practice for Cartesian case

‖fΩ‖2 = 1 and for non-Cartesian case, we will evaluate the norm by
using the power iteration method [36]. Finally, the hyper-parameters
in this algorithm are set as follows: τ = 1

β
, κ = β

2‖T‖2 . Note
that when T defines an orthonormal basis decomposition, we get
‖T ‖ = 1.

After convergence, the reconstruction algorithm delivers x̂
hence one image per channel. In the end, all coil-specific MR images

Algorithm 1: Condat-Vú algorithm

1 initialize k = 0, τ > 0, κ > 0, x0, z0;
2 while k ≤ K do
3 xk+1 := xk − τ (∇f(xk) + T ∗zk);
4 wk+1 := zk + κT

(
2xk+1 − xk

)
;

5 zk+1 := wk+1 − κ proxg/κ
(

wk+1

κ

)
;

6 end

are combined using the square-root of the sum-of-squares (sSOS),

x̂sSOS =
√∑L

`=1 ‖x̂`‖22, to form a single image as usually done
in the PI setting.

3. JOINT-SPARSITY REGULARIZATIONS

Group-LASSO regularization. The group Least Absolute
Shrinkage and Selection Operator or group-LASSO penalty has
already been studied in parallel imaging [24]. Moreover, the authors
in [26] have proved tighter recovery guarantees (i.e., inequality con-
centrations) using such regularization term. This means that one
can perfectly reconstruct MR images in the noiseless case using a
smaller number of measurements collected in parallel imaging as
compared to the number required in the single channel mode.

Here, we define z = [z1, . . . , zL] ∈ CNΨ×L, with z` ∈ CNΨ

the wavelet coefficients of the `th coil such that z` = Ψx` and Ψ be-
ing a multiscale wavelet transform with C scales, Sc the number of
sub-bands in scale c, Psc the number of coefficients in sub-band sc,
and NΨ =

∑C
c=1

∑Sc
s=1 Ps. For z ∈ CNΨ×L, the group-LASSO

regularization is given by:

gGL(z) = ‖z‖1,2 =

C∑
c=1

λγc
Sc∑
s=1

Psc∑
p=1

√√√√ L∑
`=1

|zcsp`|2
 (4)

where zcsp` is the pth wavelet coefficient of the sth sub-band in the
cth scale for the `th coil. Since the group penalty is separable across
scales, sub-bands and inter-sub-band position, the proximity opera-
tor of the group-LASSO is separable too and can be treated in paral-
lel. For given c, s p and l, the proximity operator reads:

(
proxλγc‖·‖1,2(z)

)
csp`

=

{
zcsp`

(
1− λγc

αcsp

)
, if αcsp ≥ λγc

0 , otherwise
(5)

with αcsp =
√∑L

`=1 |zcsp`|2. Note that the hyper-parameters λ
and γ are both positive and need to be set. γ typically enables
a scale-dependent regularization according to a power-law behav-
ior [37].
Sparse group-LASSO regularization. While the group spar-
sity regularization only promotes sparsity across groups, the sparse
group-LASSO also tries to impose sparsity within each group (i.e.
each scale c, sub-band s and position p). This penalization is de-
fined as follows:

∀z ∈ CNΨ×L, gsGL(z) = gGL(z) + µ ‖z‖1 (6)

The proximity operator is explicit and corresponds to the com-
position of the proximity operator of the group-LASSO given in
Eq. (5) and the soft-thresholding as established in [29]. The hyper-
parameters that need to be set are λ, γ and µ, all being positive.
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Fig. 1. (a) Cartesian reference. (b) Reconstruction with no regularization term. (c) Reconstruction based on the group-LASSO penalty.
(d) Reconstruction based on the sparse group-LASSO penalty. (e) Reconstruction based on OSCAR penalty (f) reconstruction based on
`1-ESPIRiT. (g)-(l) Respective zooms in the red square, (m)-(r) zoom of the difference between the Cartesian referance and the reconstructed
image.

OSCAR regularization. In order to go one step further, one may
want to add some group-pairing in the regularization, however, infer-
ring the structure is difficult without imposing an explicit prior. To
avoid this problem, OSCAR regularization [30] will infer a group
structure via a pairwise `∞ norm while imposing the `1 norm as a
sparsity constraint. We denote by z↓ ∈ CNΨ×L the wavelet coef-
ficients sorted in decreasing order across sub-bands and channels,
i.e.: ∀c ∈ {1, . . . C}, s ∈ {1, . . . , Sc}, j ∈ {1, . . . , PsL}; |zcs1| ≤
· · · ≤ |zcsj | ≤ · · · ≤ |zcsPsL|. The OSCAR regularization term
reads as follows:

gOSCAR(z) = λ

C∑
c=1

Sc∑
s=1

[
PsL∑
j=1

(|zcsj |+ γ
∑
k<j

max{|zcsj |, |zcsk|})

]

= λ

C∑
c=1

Sc∑
s=1

[
PsL∑
j=1

(γ(PsL− j) + 1) |(z↓)csj |

]
(7)

with λ and γ some positive hyper-parameters that need to be set.
Since OSCAR is a particular case of ordered weighted `1 norm, its
proximity operator is defined in [38, Eq. (24)]. Moreover, the prox-
imity operator is separable across scales and sub-bands, hence its
parallelization is easy.

4. NUMERICAL EXPERIMENTS

Data acquisition. An ex-vivo baboon brain was scanned on
a 7T system (Magnetom Siemens scanner, Erlangen, Germany)
using a 32-channel (Nova Medical Inc., Washington, MA, USA)
coil (L = 32). A modified 2D T2*-weighted GRE sequence

was implemented to perform prospective CS using the multi-shot
Sparkling trajectories [5] that match a variable density with a poly-
nomial decay h(kx, ky) = 1/|k|2. Shots were generated all together
and the sampling scheme was composed of 34 spokes of 3072 sam-
ples each (readout of 30.72ms per shot and M = 104, 448 samples
in total), which leads to an acceleration factor of 15 in time and an
under-sampling factor of 2.5. The acquisition parameters were set
as follows: FOV = 200 × 200 mm2, TR = 550 ms (for 11 slices),
TE = 30 ms, BW = 100 kHz and FA=25◦ with in-plane resolution
of 390 µm and 3mm slice thickness, and a fully sampled Cartesian
reference was acquired using the same sequence parameters (ma-
trix size: 512 × 512). The corresponding image dimension was
N = 5122. Since the trajectory is non-Cartesian, we used the Non-
equispaced FFT [31] to compute fΩ operator in Eq. (1). We used the
Undecimated bi-Orthogonal Wavelet Transform with 4 decomposi-
tion scales for Ψ (with C = 4 and Sc = 4, ∀c ∈ {1, . . . , C} and
Ps = N,∀c ∈ {1, . . . , C} and ∀s ∈ {1, . . . , Sc}) as the latter has
been shown to increase the image quality in CS reconstruction [39].

For each regularization, the hyper-parameters were tuned so as
to maximize sSOS Structural Similarity Metric (SSIM) index [40]
using a grid search procedure over a discrete set of values. Note that
we did check that the best score was reached in the strict interior
of the tested parameter range. All experiments were run on a com-
puter with 128 GB of RAM and an 8-core (2.40 GHz) Intel Xeon
E5-2630 v3 Processor. To have a fair comparison in terms of com-
puting time (Table 2), we disabled the multi-threading acceleration
and the number of iterations was set to K = 200, which appears to
be sufficient to reach SSIM stability. Parallelization allowed us to
speed up the reconstruction by a factor of 10 using 16 threads for the



Table 1. Image quality assessment for all regularizers.
SSIM pSNR (dB) NRMSE

Group-LASSO 0.864 26.92 0.254
Sparse group-LASSO 0.851 26.77 0.259

OSCAR 0.875 30.49 0.177
No regularization 0.847 26.5 0.263
`1-ESPIRiT 0.874 28.32 0.238

OSCAR penalization. All the codes have been developed in Python
in the open-source PySAP package.
Results. The solution to the `1-ESPIRiT formulation was taken as
the gold standard parallel MRI acceleration techniques. In Tab. 1, the
performances of the different penalizations are compared in terms of
SSIM, peak SNR (pSNR) and Normalized Root Mean Square Er-
ror (NRMSE). The corresponding images are shown in Fig. 1.
The group-LASSO gGL and its sparse refinement gsGL provide sim-
ilar results in terms of image quality. However the sparse group-
LASSO requires the setting of an extra hyper-parameter µ which
eventually slows down the tuning step. As suggested in [26], the
worse performance of the group-LASSO penalty may be explained
in terms of error propagation in the sSOS image. The `1-ESPIRiT
solution seems to better preserve the image structure although we
notice the presence of gridding artifacts as confirmed by all image
quality scores. One feature of calibrationless reconstruction meth-
ods is their ability to recover coil-specific images. Fig 2 compares
the SSIM scores across all channels for all penalizations. The group-
LASSO and its sparse variation have a reduced dispersion in SSIM
while OSCAR extends this variability. In that way, OSCAR better
enhances coil-specific images associated with the highest SNR level
at the expense of lower SNR channels (see images in Fig. 3).

Fig. 2. Assessment of the SSIM score per channel.

Parallelization. One of the limitations of CS reconstruction is the
computation time required to recover images especially in the paral-
lel and non-Cartesian imaging paradigm. Hence, it is of critical im-
portance to identify computational bottlenecks and ways of getting
rid off them. The computation of the non-Cartesian Fourier operator
fΩ

1 can be parallelized using the multithreaded acceleration in the
pynfft package.

Table 2. Assessment of computation time. To get the total comput-
ing time, multiply the time per iteration by K = 200.

Computing time (s) for
proximity operator

Time per
iteration (s)

Group-LASSO 7.9 32.9
Sparse group-LASSO 10.9 35.9

OSCAR 30.9 55.9
`1-ESPIRiT — 18.9

1Its numerical complexity is equal to O(N(log(N) + | log(ε)|M) [31],
where ε is the desired accuracy

No reg. Group-LASSO Sparse GL OSCAR
SSIM= 0.630 SSIM= 0.680 SSIM= 0.672 SSIM= 0.646

SSIM= 0.846 SSIM= 0.880 SSIM= 0.863 SSIM= 0.893

Fig. 3. From left to right, no penalization, group-LASSO solution,
sparse group-LASSO and OSCAR solution for two different chan-
nels, the first row is a low SNR channel while the second is high
SNR.

The different penalizations described in Section 3 have differ-
ent numerical complexity regarding the calculation of their proxim-
ity operator (3): from O(LNΨ) for the proximity operator of gGL

and gsGP to O (NΨL log(PsL)) for gOSCAR one. Hence, this im-
pacts the computing time of these proximity operators as well as the
whole reconstruction time as summarized in Tab. 2. In comparison,
`1-ESPIRiT seems less demanding. However, we did not take into
account the time required for extracting the sensitivity maps.

5. CONCLUSION & DISCUSSION

In this work, we proposed a new parallel CS-MRI reconstruction al-
gorithm without requiring the extraction of sensitivity maps. This
approach can be formulated as a convex optimization problem rely-
ing on the OSCAR penalty term. We evaluated the image quality
on ex-vivo baboon brain k-space data collected in a prospective and
highly accelerated manner at 7T. We compared OSCAR results to
the ones given by the group-LASSO and sparse group-LASSO as
well as with the state-of-the-art `1-ESPIRiT solution. We demon-
strated that one can reconstruct MR images using well suited group
sparsity priors without coil sensitivity information, since OSCAR
outperforms its competitors. Extended reconstruction tests would
be required to assess this observation. In terms of computing time,
the reconstruction is more demanding using OSCAR, but a siginifi-
cant acceleration can be expected using multi-threading. This might
have a significant impact on in-vivo dynamic MRI to mitigate the
subjects’ motion since an estimation of sensitivity maps is usually
required for each scan of the image series.

https://github.com/CEA-COSMIC/pysap
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calibrating nonlinear reconstruction algorithms for variable density
sampling and parallel reception MRI,” in 10th IEEE SAM workshop,
2018.

[21] M. Uecker, P. Lai, M. Murphy, P. Virtue, M. Elad, J. Pauly,
S. Vasanawala, and M. Lustig, “ESPIRiT– an eigenvalue approach to
autocalibrating parallel MRI: where SENSE meets GRAPPA,” Mag.
Res. in Med., vol. 71, no. 3, pp. 990–1001, 2014.

[22] L. Ying and J. Sheng, “Joint image reconstruction and sensitivity es-
timation in SENSE (JSENSE),” Mag. Res. in Med., vol. 57, no. 6, pp.
1196–1202, 2007.

[23] J. Zhang, C. Liu, and M. Moseley, “Parallel reconstruction using null
operations,” Mag. Res. in Med., vol. 66, no. 5, pp. 1241–1253, 2011.

[24] A. Majumdar and R. Ward, “Calibration-less multi-coil MR image re-
construction,” Mag. Res. in Med., vol. 30, no. 7, pp. 1032–1045, 2012.

[25] J. Trzasko and A. Manduca, “Calibrationless parallel MRI using
CLEAR,” in Signals, Systems and Computers (ASILOMAR), 2011 Con-
ference Record of the Forty Fifth Asilomar Conference on. IEEE, 2011,
pp. 75–79.

[26] I. Chun, B. Adcock, and T. Talavage, “Efficient compressed sensing
SENSE pMRI reconstruction with joint sparsity promotion,” IEEE
transactions on Medical Imaging, vol. 35, no. 1, pp. 354–368, 2016.

[27] Y. Eldar and H. Rauhut, “Average case analysis of multichannel sparse
recovery using convex relaxation,” IEEE Transactions on Information
Theory, vol. 56, no. 1, pp. 505–519, 2010.

[28] P. Boufounos, G. Kutyniok, and H. Rauhut, “Sparse recovery from
combined fusion frame measurements,” IEEE Transactions on Infor-
mation Theory, vol. 57, no. 6, pp. 3864–3876, 2011.

[29] J. Friedman, T. Hastie, and R. Tibshirani, “A note on the group lasso
and a sparse group lasso,” arXiv preprint arXiv:1001.0736, 2010.

[30] H. Bondell and B. Reich, “Simultaneous regression shrinkage, vari-
able selection, and supervised clustering of predictors with OSCAR,”
Biometrics, vol. 64, no. 1, pp. 115–123, 2008.

[31] J. Keiner, S. Kunis, and D. Potts, “Using NFFT 3—a software library
for various nonequispaced fast fourier transforms,” ACM Transactions
on Mathematical Software (TOMS), vol. 36, no. 4, pp. 19, 2009.

[32] J. Fessler and B. Sutton, “Nonuniform fast fourier transforms using
min-max interpolation,” IEEE Transactions on Signal Processing, vol.
51, no. 2, pp. 560–574, Feb 2003.

[33] L. Condat, “A primal–dual splitting method for convex optimization in-
volving lipschitzian, proximable and linear composite terms,” Journal
of Optimization Theory and Applications, vol. 158, no. 2, pp. 460–479,
Aug 2013.
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