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ABSTRACT

The identification of parameters of spatially variant blurs
given a clean image and its blurry noisy version is a challeng-
ing inverse problem of interest in many application fields,
such as biological microscopy and astronomical imaging. In
this paper, we consider a parametric form for the blur and
introduce a state-space model that describes the statistical
dependence among the neighboring kernels. Our Bayesian
approach aims at estimating the posterior distributions of
the kernel parameters given the available data. Since those
posteriors are not tractable due to the nonlinearities of the
model, we propose a sequential Monte Carlo approach to
approximate the distributions by processing the data in an
online manner. This allows to consider numerous overlapped
patches and large scale images at reasonable computational
and memory costs. Moreover, it provides a measure of uncer-
tainty due to the Bayesian framework. Practical experimental
results illustrate the good performance of our novel approach,
emphasizing the benefit to exploit the spatial structure for an
improved estimation quality.

Index Terms— Blur identification; spatially variant blur;
Bayesian estimation; particle filtering.

1. INTRODUCTION

Optical instruments often produce images that suffer from
blur due to light diffraction or object motion, among many
other causes. The presence of the blur provokes an infinites-
imally point-source to be spread in the acquired image defin-
ing the so-called Point Spread Function (PSF). Several com-
putational strategies have been proposed in the literature for
first estimating and then removing the blur in acquired images
[1, 2], or for jointly estimating both image and blur with a
blind deconvolution strategy [3]. Obviously, the performance
of the deblurring step strongly depends on the accuracy of the
PSF estimation. An efficient strategy for this estimation re-
lies on a preliminary acquisition step of normalized and cal-
ibrated objects, such as fluorescent spherical microbeads in
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microscopy [4] or resolution charts in digital camera calibra-
tion [5, 6]. Then, the problem is formulated as a linear system
that can be inverted efficiently with penalized optimization
strategies [7, 8]. The result can finally be fitted in a paramet-
ric non-linear model of the PSF in order to uncover character-
istics of the optical system [9, 10, 11].

In most realistic scenarios, the PSF cannot be considered
constant throughout the field-of-view due to various reasons
such as defocus [12, 13], moving objects or cameras [14],
anisotropic optical lens aberrations [15], or atmospheric tur-
bulence [16, 17]. This non-stationary behavior gives rise to
the so-called spatially variant blur [18]. This blur is much
harder to estimate since the associated PSFs need to be recov-
ered at each location in the spatial plane. This also induces a
critical increase of computational complexity for identifying
and removing the blur [7, 19, 20], and approximation strate-
gies must often be employed to limit the cost of the blur op-
erator [21, 22, 23].

In this paper, we focus on the problem of identifying the
parameters of spatially variant PSFs from calibrated image
acquisitions. We consider a parametric form for the blurs
and formulate the problem of estimating the parameters as
a state-space model assuming a smooth variation of the PSF
shapes from neighboring regions. Since the resulting state-
space model is nonlinear, we choose a particle filtering ap-
proach and its backward-simulation smoother to approximate
the filtering and the smoothing posterior distributions, respec-
tively. Our approach processes in an online manner a se-
quence of possibly overlapped patches extracted from the ac-
quired image, and provides a probabilistic estimate of the
kernel parameters at the corresponding patch locations. The
Bayesian framework brings three key features, namely (i) lim-
ited computational cost and memory load thanks to an online
processing, (ii) an explicit quantification of the statistical un-
certainty on the estimated parameters, and (iii) a remarkable
flexibility in the choice of the state-space models, allowing
to account for non-linear relations and non-Gaussian noise.
As an example, we propose a specific state-space model that
accounts for smooth variations in scale and orientation along
the neighboring kernels. We illustrate the efficiency and good
performance of the approach by means of two sets of numer-
ical experiments.

The rest of the paper is organized as follows. Section 2



introduces the problem of spatially variant blur identification.
Section 3 presents our algorithm for Bayesian inference, and
introduces a specific state-space model for parametric PSF
estimation. Section 4 illustrates the performance of the pro-
posed approach, and Section 5 concludes the paper.

2. PROBLEM STATEMENT

Let us consider the observation of two images (x,y) ∈ RN ,
where x is the clean image and y is a blurry noisy version of
it. Blur identification aims at estimating the parameters of the
blur model that allows to describe the relationship between x
and y, accounting for the presence of noise. In this paper, we
consider the case of spatially variant blurs. More precisely,
let us decompose each image x ∈ RN into T possibly over-
lapped patches (xt)1≤t≤T ∈ RP . We assume that, for each
patch index t ∈ {1, . . . , T},

yt = Xtht + nt, (1)

where (yt)1≤t≤T ∈ RP is the set of blurry noisy patches,
(nt)1≤t≤T ∈ RP models the additive noise. Hereabove,
(Xt)1≤t≤T ∈ RP×L are suitable block circulant matrices
related to x, which encode 2D convolutions with circulant
boundaries padding with (ht)1≤t≤T ∈ RL, the unknown blur
kernels associated with each patch localization. The goal is
thus to estimate the set of kernels (ht)1≤t≤T , given the inputs
(yt,Xt)1≤t≤T . In this work, we will consider a parametric
model for the blur kernels given by

(∀t ∈ {1, . . . , T}), ht = h(ρt), (2)

where h is a known function describing the general 2D shape
of the kernels, parametrized by (ρt)1≤t≤T ∈ RK , K ≥ 1.
For instance, a defocus blur can be described using a circular
function parametrized by its radius [24], while uniform mo-
tion blur can depend on length and rotation parameters [25].
This parametric model can also encompass the widely used
Gaussian blur shape [26] that we will retain for our experi-
ments. More sophisticated parametric models can be found
for instance in [27]. In the following section, we will propose
a versatile filtering strategy for approximating the posterior
distribution of (ρt)1≤t≤T , while allowing for an efficient on-
line treatment of the inputs (yt,Xt)1≤t≤T . Then, we will dis-
cuss a useful example of state-space model to describe the sta-
tistical dependencies of the vector of parameters (ρt)1≤t≤T .

3. PROPOSED METHOD

3.1. Bayesian inference in state-space models

Let us assume a Markovian dependency among the kernels,
described by the state-space model

p(ρ0), p(ρt|ρt−1), p(yt|ρt,Xt), (3)

Table 1: BPF algorithm with backward-simulation smoother for space-
variant blur identification.

1. Initialization. Draw M i.i.d. samples, (ρ(m)
0 )1≤m≤M from the

prior p(ρ0).

2. Filtering step. For t = 1, ..., T :

(a) Simulate ρ
(m)
t ∼ p(ρt|ρ(m)

t−1), m = 1, ...,M .

(b) Compute the normalized weights by

w
(m)
t ∝ p(yt|ρ(m)

t ,Xt), m = 1, ...,M. (4)

(c) Append the samples to the state histories

ρ̂
(m)
0:t = (ρ

(m)
0:t−1,ρ

(m)
t ), m = 1, ...,M. (5)

(d) Resample M times from {ρ(m)
t }Mm=1 with associated

probabilities {w(m)
t }Mm=1, i.e., for m = 1, ...,M , let

ρ
(m)
0:t = ρ̂

(j)
0:t with probability w(j)

t , j = 1, ...,M .

3. Backward-simulation smoothing step. For s = 1, ..., S,
choose

ρ̃
(s)
T = ρ

(m)
T (6)

with probability w(m)
T . Then for t = T − 1, ..., 1:

(a) Compute the normalized new weights by

w
(m)
t|t+1

∝ w(m)
t p(ρ̃t+1|ρ(m)

t ) (7)

(b) Choose
ρ̃
(s)
t = ρ

(m)
t (8)

with probability w(m)
t|t+1

.

where p(ρ0) is the prior distribution of the state, p(ρt|ρt−1)
is the state model, and p(yt|ρt,Xt) is the observation model.
Our goal consists in estimating probabilistically the un-
known parameters of the model. In the sequential process-
ing approach, we build the sequence of filtering posterior
distributions given the processed data up to patch index t,
(p(ρt|X1:t,y1:t))1≤t≤T and the sequence of smoothing pos-
terior distributions given all dataset (p(ρt|X1:T ,y1:T ))1≤t≤T .
Unfortunately, for most realistic state-space models, these
distributions cannot be obtained analytically, and one needs
to resort to approximations. Table 1 describes the sequential
Monte Carlo approach for estimating those distributions. Step
2 implements the filtering mechanism, and in particular we
describe the bootstrap particle filter (BPF) algorithm. In Step
3, we implement the backward-simulation (BS) smoother to
approximate the smoothing distribution, given all filtering
distributions. Note that, without loss of generality, we have
considered the BPF (arguably the most popular particle filter
implementation [28]) and the simple BS smoother, but other
advanced filters could be employed instead [29, 30, 31]. As
a result of the BPF, for each patch t, we can approximate
the filtering distribution p(ρt|X1:t,y1:t) by the M generated
particles (ρ

(m)
t )1≤m≤M and associated normalized weights

(w
(m)
t )1≤m≤M computed in Step 2(a)-(b). Moreover, the

BS step allows to approximate the smoothing posterior dis-
tributions (p(ρt|X1:T ,y1:T ))1≤t≤T by S equally weighted



sampled particles (ρ̃
(s)
t )1≤s≤S given by Step 3(b).

3.2. State-space model for the PSF variation

Let us now present a specific model for the evolution of
the parameters (ρt)1≤t≤T along the patches, which re-
lies on the assumption that the PSFs of two neighbor-
ing patches only differ by a small change in their scale
and orientation. More precisely, let us consider that func-
tion h(·) takes as an input a vector of three parameters
(θ, s). The parameter θ ∈ R defines the orientation while
s ∈ (0,+∞)2 quantifies the width of the PSF. This model
allows for instance to encompass the family of centered
Gaussian blur kernels parametrized by a covariance matrix
C(θ, s) = RθDiag(s)R>θ with Rθ ∈ R2×2 denoting the
rotation matrix with angle θ. We then propose the following
Markov model for (ρt)1≤t≤T = ([θt, st])1≤t≤T :

p(θt|θt−1) = N (θt; θt−1, σ
2
θ), (9)

with σθ > 0, and

p(st|st−1) = N[smin,smax]2(st; st−1, σ
2
sI), (10)

where σs > 0 and [smin, smax] ⊂ (0,+∞) is the support of the
truncated Gaussian distribution that models the scale parame-
ters evolution. Parameters σθ, σs, smin, and smax are assumed
to be known. Note that there exist methods that can estimate
these static parameters otherwise [32].

4. EXPERIMENTAL RESULTS

4.1. Experimental settings

We illustrate the performance of the proposed approach in two
sets of numerical experiments. Three images of size N =
512 × 512 displayed in Fig. 1 will be considered in our tests
(Mire, Cells, and Hubble), which represent objects that
are typically imaged for blur calibration in digital cameras,
microscopes, and telescopes, respectively. Each image x is
decomposed into T possibly overlapped patches of size 64×
64. Each patch (yt)1≤t≤T of the blurry noisy image y is gen-
erated using Eqs. (1)-(2). For each patch, h(ρt) is a normal-
ized Gaussian blur kernel of size 15×15 with mean at the cen-
ter (8, 8), and with both width and orientation parametrized
by the covariance matrix C(θt, st) introduced above. Pa-
rameters (θt, st)1≤t≤T to be estimated are chosen using two
alternative strategies described in the next subsection. The
prior distribution in the state-space model is considered as
uniform: p(θ0) = U ([0, 2π]), p(s0) = U

(
[smin, smax]2

)
.

For simplicity we consider a Gaussian noise model given by
p(yt|ρt,Xt) = N (yt;Xth(ρt), σ

2
nI). More sophisticated

noise models could be directly plugged into our framework
(see for instance [33]), since the only requirement of the BPF
is to be able to evaluate the likelihood functional in Step 2(b)

[30]. We implement BPF algorithm with M = 1000 particles
and S = 100 samples for BS as this setting allows to reach the
best compromise in terms of computational complexity and
stability of the estimator performance. BPF algorithm fol-
lowed by a BS step is noted as BPF-BS. More advanced par-
ticle filters could be directly used, e.g., auxiliary PFs [29, 34]
or schemes with an automatic adaptation of M [35]. Finally,
note that the numbering order for the patches plays an im-
portant role in our method, as it dictates the ordering relation
in our Markovian transition model, as well as the order of
the sequential updates in Table 1. If not specified otherwise,
we will follow the lexicographic ordering. The estimation of
spatially variant PSF parameters in an online manner has not
been addressed in the literature, up to our knowledge. In order
to quantify the gain of exploiting the spatial structure of the
problem, we compare the filtering and smoothing posteriors
with the posterior distribution p(ρt|Xt,yt), approximated by
an importance sampling (IS) strategy. We also compare with
an approach based on the maximum a posteriori (MAP) es-
timator of (ht)1≤t≤T that promotes space-varying blurs with
smooth variations, satisfying simplex constraint [36, 7]. Note
that no parametric model is assumed in that case. More pre-
cisely, a penalized least squares loss function, accounting for
simplex constraints as well as 2D spatial regularity, is formu-
lated, and minimized using FISTA algorithm [37].

The performance of all methods are evaluated in terms of
the root mean squared error (RMSE) averaged over patches,
i.e., RMSE = 1

T

∑T
t=1

||ht−ht||2
||ht||2 where ht and ht are respec-

tively the original and estimated ke also promotes a spatially-
varying blurrnels at patch t. More precisely, ht = h(θ̄t, s̄t)
with θ̄t and s̄t the mean estimators of the angle and scale pa-
rameters for BPF, BPF-BS and IS, while ht is the MAP esti-
mator at patch t, for the MAP approach. Note that BPF, BPF-
BS, and IS approximate the whole distribution of the patch
parameters, so any other moment of the distribution could be
computed, contrasting with the MAP strategy.

All the presented results are averaged over 100 runs. We
conduct the numerical experiments in a Matlab environment
on a computer with an Xeon(R) W-2135 processor (3.7 GHz
clock frequency) and 12 GB of RAM.

Fig. 1: Test images Mire, Cells and Hubble.

4.2. Numerical results

In our first set of experiments, parameters (θt, st)1≤t≤T
are generated following the transition model in Section 3.2,
with T = 64 non-overlapped patches, σθ = σs = 0.1,
smin = 0.01 and smax = 0.5. Two noise levels are consid-



ered, namely σn ∈ {0.01, 0.1}. Table 2 presents the averaged
RMSE for all tested methods. A first observation is that BPF,
BPF-BS and IS appear superior to the MAP approach in terms
of accuracy, probably because they account explicitly for the
parametric shape of the blur. Note that the former methods
are also faster. In this example, the running time for MAP is
160 seconds, 10 seconds for BPF and IS and 22 seconds for
BPF-BS. The poor performance of IS illustrates that adding
the information of the spatial structure improves the inference
task. Finally, the smoothing procedure increases the quality
of the estimates, at the expense of an extra pass on the dataset
and hence a slight increase of computational time. Figure 2
displays, for a specific run, the true parameters (blue circles),
the mean of the posterior approximated by BPF (red crosses)
and BPF-BS (green crosses), and the error bars showing the
mean plus/minus two standard deviations approximated by
BPF (red lines) and BPF-BS (green lines). The figure not only
shows the great tracking ability of both filtering/smoothing
methods but also the uncertainty quantification (note that in
patches where the estimation is not as good, the error bars
are also wide). One can notice that BPF-BS has improved
estimates for the first patch when compared to the BPF thanks
to the backward-simulation smoothing process.

σn Mire Cells Hubble

BPF 0.0825 0.0733 0.0682
10−2 BPF-BS 0.0827 0.0754 0.0663

IS 0.1373 0.1892 0.1504
MAP 0.1870 0.2462 0.1905
BPF 0.1409 0.2202 0.1304

10−1 BPF-BS 0.1269 0.1434 0.1127
IS 0.2491 0.3493 0.2877
MAP 0.2923 0.3451 0.3380

Table 2: RMSE for BPF, BPF-BS, IS and MAP approaches respectively.
Kernels generated using the exact transition models.
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Fig. 2: Mean and variance estimates using BPF (red) and BPF-BS (green)
compared to the original parameters generated using the state-space model
(blue) for noise level 0.1 and Mire image.

In the second setup, the scale and orientation parameters
of the kernels are generated using realistic optical models.
Two spatially variant models described in [23, Fig.8] and [2,
Fig.7] are tested. Small random perturbations are added in the
parameters of the evolution laws explaining the spatial vari-
ation of the PSFs to better represent the variability one can
experience in a true acquisition device. Regarding the patch

Fig. 3: Kernels identification using Cells image with 8×8 overlap: noisy
blurry images (top-left); original kernels generated using model from [2,
Fig.7] (top-middle); restored kernels with BPF (top-right), BPF-BS (bottom-
left), IS (bottom-middle) and MAP (bottom-right).

Overlapped size 0× 0 8× 8 32× 32

Model [23, Fig.8] BPF 0.1663 0.1414 0.1151
BPF-BS 0.1258 0.1107 0.1023
IS 0.2883 0.2829 0.2808
MAP 0.2543 0.2380 0.2098

Model [2, Fig.7] BPF 0.1313 0.1191 0.1028
BPF-BS 0.1079 0.1054 0.0932
IS 0.3361 0.3321 0.3313
MAP 0.1608 0.1641 0.1525

Table 3: RMSE for BPF, BPF-BS, IS, MAP respectively. Cells image
using kernels generated with two realistic space-varying models.

positions, we consider three cases, namely (i) non-overlapped
(T = 64), (ii) overlapped size = 8×8 (T = 81) and (iii) over-
lapped size = 32× 32 (T = 225). The spiral order initialized
in the image center is used for the model from [23, Fig.8] to
better capture the radial symmetry of the kernels map. We set
σn = 0.05 and (σθ, σs) are chosen using a golden search
to minimize the RMSE. Table 3 presents RMSE for BPF,
BPF-BS, IS and MAP approaches for image Cells. Again,
we clearly observe the improvement brought by our strategy.
Moreover, as expected, increasing the overlapped size tends
to improve the results quality, as more observations facilitate
the inference task. Fig. 3 presents an example of results that
illustrates the spatial regularization effect brought by the pro-
posed state model, which contrasts with the non-regularized
IS methods. We can also visually assess the advantage of us-
ing a parametric form for the kernel, when compared to the
non-parametric MAP approach. The estimators derived by
BPF-BS are the best among these four methods in all cases.

5. CONCLUSION

This paper addresses the estimation of PSF parameters for
spatially varying blurs. We propose an original statistical
modeling of the problem, accounting for the spatial depen-
dency among neighboring kernels, and apply a sequential
Bayesian inference technique in this context. Our results
in different scenarios illustrate the good performance of the
approach, including a useful uncertainty quantification. The
novel approach opens many possibilities beyond this work.
For instance, different noise distributions could be immedi-
ately used. Moreover, other state-space models, not necessar-
ily Markovian, could be considered.
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