Skip to Main content Skip to Navigation
Journal articles

Extension De Germes De Difféomorphismes CR Pour Une Classe D'Hypersurfaces Analytiques Réelles Non Essentiellement Finies Dans C^3

Abstract : Let H: M --> M' be a germ of smooth CR diffeomorphism between M and M', two real analytic hypersurfaces at 0 in C^3, with M' given by Im w' = z_1'^mu \bar{z}_1'^mu \psi(z_1', \bar{z}_1', z_2', \bar{z}_2'), where \psi is a real analytic function in a neighborhood of 0 in C^2, satisfying \psi(0) \neq 0, \psi_{z_2^k}(0) \neq 0, for some k >= 1, \psi_{z_2'^\alpha \bar{z}_2'^\beta} = 0, for every choice of (\alpha, \beta) \in Z_+^* \times Z_+^*. We prove that His analytic.
Document type :
Journal articles
Complete list of metadata

https://hal-universite-paris-saclay.archives-ouvertes.fr/hal-03285246
Contributor : Joël Merker Connect in order to contact the contributor
Submitted on : Monday, July 19, 2021 - 2:23:22 PM
Last modification on : Tuesday, July 20, 2021 - 3:37:35 AM

File

merker-meylan-1999.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Joel Merker, Francine Meylan. Extension De Germes De Difféomorphismes CR Pour Une Classe D'Hypersurfaces Analytiques Réelles Non Essentiellement Finies Dans C^3. Complex Variables and Elliptic Equations, Taylor & Francis, 1999, 40 (1), pp.19-34. ⟨10.1080/17476939908815206⟩. ⟨hal-03285246⟩

Share

Metrics

Record views

9

Files downloads

10