Extension De Germes De Difféomorphismes CR Pour Une Classe D'Hypersurfaces Analytiques Réelles Non Essentiellement Finies Dans C^3
Abstract
Let H: M --> M' be a germ of smooth CR diffeomorphism between M and M', two real analytic hypersurfaces at 0 in C^3, with M' given by Im w' = z_1'^mu \bar{z}_1'^mu \psi(z_1', \bar{z}_1', z_2', \bar{z}_2'), where \psi is a real analytic function in a neighborhood of 0 in C^2, satisfying \psi(0) \neq 0, \psi_{z_2^k}(0) \neq 0, for some k >= 1, \psi_{z_2'^\alpha \bar{z}_2'^\beta} = 0, for every choice of (\alpha, \beta) \in Z_+^* \times Z_+^*. We prove that His analytic.
Domains
Mathematics [math]
Origin : Files produced by the author(s)