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This memoir is divided in three parts'. Part I endeavours a general, new theory (inspired by
modern CR geometry) of Lie symmetries of completely integrable PDE systems, viewed from
their associated submanifold of solutions. Part I builds general combinatorial formulas for the
prolongations of vector fields to jet spaces. Part III characterizes explicitly flatness of some sys-
tems of second order. The results presented here are original and did not appear in print elsewhere;
most formulas of Parts II and III were checked by means of Maple Release 7.

§1. COMPLETELY INTEGRABLE SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

1.1. General systems. LetK = RorC. Letn € Nwithn > landletx = (2!,... 2") €
K™. Also, letm € Nwithm > landlety = (y*,...,y™) € K™ For a € N", we denote
by a subscript ¥/« the partial derivative 91*lyy /02 of a local map K" > z +— y(x) € K™.

Let k € Nwith x > 1, let p € N with p > 1, choose a collection of p multiindices
B(1),...,8(p) € N* with |5(¢q)| > 1 for ¢ = 1,...,p and maxi<,<, |5(¢)| = &, and
choose integers j(1),...,j(p) with 1 < j(q) < mforg =1,...,p. In the present Part I,
we study the Lie symmetries of a general system of analytic partial differential equations
of the form:

) o) = F (2. 9(@), (50 (0) 1c0c, )
where 7 with 1 < j < m and a € N" satisfy
(1.2) (J,@) #(5,0) and (4, ) # (j(q), B(q)).

In particular, all (k+1)-th partial derivatives of the unknown y = y(x) depend on a certain
precise set of derivatives of order < «: the system is complete. In addition, all the other
partial derivatives of order < x do also depend on the same precise set of derivatives.
Here, we assume that u = 0 is a local solution of the system (&) and that the functions
F7 are K-algebraic (in the sense of Nash) or K-analytic, in a neighborhood of the origin in

Date: 2011-5-27.
'Part IT of [Me2005a] already appeared as [Me2005b].
1



2 JOEL MERKER

K"t™+?_ Even if our concern will be local throughout, we will not introduce any special
notation to speak of open subsets and simply refer to various K*. We will study five
concrete instances, the first three ones being classical.

Example 1.3. With n = m = k = 1, a second order ordinary differential equation

(&) Yoo = F(2,9,Ys),

and more generally y,«+1 = F(2,Y, Yz, - . . ,yxn), where z,y € K, see [Lie1883, EL1890,
Tr1896, Cal924, Sel931, Cal932a, O11986, Ar1988, BK1989, GTW1989, HK1989,
161992, 011995, N2003].

Example 1.4. Withn > 2, m = 1 and k = 1, a complete system of second order
equations

(&2) Ypirgin = Fivin (2,4, y00), 1 <in i <,

see [Ha1937, Ch1975, Su2001] and Part III below.

Example 1.5. Dually, withn = 1, m > 2 and k = 1, an ordinary system of second order
(&) Yie = F/(z,y ),  j=1,...,m,

see [Fe1995, Me2004] and the references therein.

Example 1.6. Withn = 1, m = 2 and x = 1, a system of the form
y2 = F(z,y" 9% ys)
Ure = Gz, 4", 9%, k).

Differentiating the first equation with respect to = and substituting, we get the missing
equation:

(&1

Veo = Fetyp Fp 4 B + 45, Fyy
(1.7) =F4ysFp+y.Fe+ GFy
=: H(x, yt 2, y;)
Example 1.8. Withn =2, m = 1 and k = 2, a system of the form

yLUQ 1 (x17m2’y7 y1‘17y$1l‘1)
&
( 5) {yxl

zlzl = G(Ilu LC2, Y, Yzl y:plxl) .
Here, five equations are missing. Differentiating the first equation with respect to z* and
substituting:
Yp1z2 = Facl + Yy Fy + Yzt Fyz1 + Ypizizl Fym121

(1.9) =Fp 4+ yn Fy+ypn Fy, +GFy

= H(xla ZUQ, Yy Yz, yx1x1)7
and then similarly for y,2,2, Yuo1,122, Yp1z222, Yr2a2,2.
1.10. Finitely nondegenerate generic submanifolds of C"*™. Examples 1.3, 1.4, 1.6
and 1.8 (but not 1.5) are intrinsically linked to real submanifolds of complex submani-
folds.

Let M be a real algebraic or analytic local generic CR? submanifold of C"*™ of codi-
mension m > 1 and of CR dimension n > 1, and let p € M. Classically, there exists local

Fundamentals about Cauchy-Riemann geometry may be found in [Bo1991, BER1999, Me2005a,
Me2005b, MP2005].
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holomorphic coordinates t = (z,w) € C™ x C™ centered at p in which M is represented
by

(1.11) w =0 (z,z,w), j=1,...,m,
for some local C-analytic map © = (©!,... ©™) satisfying the identity
(1.12) w= @(z, z,0(z, z,w)),

reflecting the fact that M is real.

Definition 1.13. ([BER1999, Me2005a, Me2005b, MP2005]) M is finitely nondegenerate
if there exists an integer x > 1 such that the local holomorphic map

N oV 1<gj<m
(1.14) (Z,0) — (925(0 z w))w]<
is of rank n +m at (z, w) = (0, 0).

From (1.12), the map w + ©(0,0,w) is already of rank m at w = 0. One
then verifies ([BER1999, Me2005a, Me2005b, MP2005]) that there exist multiindices
B(1),...,8(n) € N* with |3(k)| > 1 for k = 1,...,n and max; <<, |B(k)| = & to-
gether with integers j(1),...,j(n) with 1 < j(k) < m such that the local holomorphic
map

(1.15)  C™™ 5 (2,w) — ((@j(o,z, w)) Y (@ié’?%(o,z,w)) ) c cmtn

1<k<n
is of rank n +m at (z,w) = (0, 0).

1.16. Associated system of partial differential equations. Generalizing an idea which
goes back to B. Segre in [Sel931, Sel932] (n = m = 1), applied by E. Cartan
in [Cal932a] and studied more recently in [Su2001, GM2003a], we may associate to M
a system of partial differential equations of the form (£) as follows. Complexifying the
variables z and w, we introduce new independent variables ( € C" and £ € C™ together

with the complex algebraic or analytic m-codimensional submanifold M of C2(*+™) de-
fined by

(1.17) w=0(2,(,€), j=1,...,m
We then consider the “dependent variables” w’ as algebraic or analytic functions of the
“independent variables” z*, with additional dependence on the extra ¢ ‘parameters” ((, &).

Then by applying the differentiation 91* /92 to (1.17), we get wla(z) = ©.(2,(,£).
Assuming finite nondegeneracy and writing these equations for (j, o) = (j(k), B(k)), we
obtain a system of m -+ n equations:

w(2)=0'(2,,), j=1,...,m,
| o
W% (2) =00 (2,6, k=1,....n

By means of the implicit function theorem we can solve:

(1.19) (6,€) = R(*,w (2), wlf (2)).
Finally, for every pair (j, ) different from (j,0) and from (7(k), B(k)), we may replace
(¢,€) by R in the differentiated expression w’.(z) = ©7.(z, ¢, €), which yields

b

k() = B (5 R(H /(2.0 (2)

= FJ (25,0 (2), 0l <z>) .

This is the system of partial ditferential equations associated to M.

(1.18)

(1.20)
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Example 1.21. (Continued) Withn = m = 1,ie. M C C?* and k = 1, i.e. M is Levi
nondegenerate of equation

(1.22) w=w+12Z+ O,

where z, Z are assigned weight 1 and w, w weight 2, B. Segre [Se1931] obtained w,, =
F(z,w,w,). J. Faran [Fa1980] found some examples of such equations that cannot come
from a M C C2. But the following was left unsolved.

Open problem 1.23. Characterize equations y,, = F(x,y,y,) associated to a real an-
alytic, Levi nondegenerate (i.e. k = 1) hypersurface M C C2. Can on read the reality
condition (1.12) on F' ? In case of success, generalize to arbitrary M C C"t™,

Example 1.24. (Continued) Similarly, the system (&;) comes from a Levi nondegenerate
hypersurface M C C"' ([Hal937, CM1974, Ch1975, Su2001]. Exercise: why (£3)
cannot come from any M C C" ?

Example 1.25. (Continued) With n = 1, m = 2 and xk = 1, the system (£4) comes from
a M C C? which is Levi nondegenerate and satisfies

(1.26) T°M +[T°M, T°M] + [T°M, [T°M, T°M]| = TM

at the origin, namely which has equations of the following form, after some elementary
transformations ([Be1997, BES2005]):

w' = w' +i22 4 Oy,
(1.27) o o -
w® =w" +12z2(z+ Z) + Oy,

where z, 7 are assigned weight 1 and w!, w?, @', w? weight 2.

Example 1.28. (Continued) With n = 2, m = 1 and xk = 2, the system (&5) comes from
a hypersurface M C C? of equation ([Eb1998, GM2003b, FK2005a, FK2005b, Eb2006,
GM2006]):

151 1,152 | 51512
(1.29) w:w—H'QZZ —l—zzzi—l—zzz Lo,

1— 2222

where 21, Z1, 29, Z» are assigned weight 1 and w, w weight 2, with the assumption that
the Levi form has rank exactly one at every point, and with the assumption that M is
2-nondegenerate at 0.

1.30. Jet spaces, contact forms and Frobenius integrability. Throughout the present
Part I, we assume that the system (&) is completely integrable, namely that the Pfaffian
system naturally associated to (£) in the appropriate jet space is involutive in the sense
of Frobenius. This holds automatically in case (£) comes from a generic submanifold
M C C™™™, In general, we will construct a submanifold of solutions associated to ().
So, we must explain complete integrability.

We denote by Jr,, the space of r-th jets of maps K" > z +— y(r) € K™. Let

i G 0 7 7 n+m+mn+mn2+---+mn”
(1.31) (AT AT R Whinin) EK

denote the natural coordinates on 7, ~ Krtm(+n+=+n%) For instance, (z,y,y1) €
«711,1- We shall sometimes write them shortly:

(1.32) (.47, 15) € Krtmtmlmtein®),

where § € N" varies and satisfies || < k. Sometimes also, we consider these jet coordi-
where o is a permutation
of {1,2,..., A}, so that 7, ~ K" Ci with O, := U5E,

n+K k! n!

Y



LIE SYMMETRIES AND CR GEOMETRY 5

Having these notations at hand, we may develope the canonical system of contact forms
on J,%,, ([0O11995], [Stk2000]):

;

¢ = dy’ — Z yi da”,

95 = dy“ Z yzl L da”,
k=1

(1.33) {

For instance, withn = m = 1 and x = 2, we have 0' = dy — y; dz and 0} = dy; — y» dx.
These (linearly independent) one-forms generate a subspace C7,, ,, of the cotangent
7., whose dimension equals m C’S;;_l. For the duality between forms and vectors,
the orthogonal (C77, ) in TJY,, is spanned by the n + m Cy, ., vector fields:

(1.34)
0
Di= axl Zy’ 8]1 +Z Z ylkl RIW’

Jj1=1 J1=1 k1, kk—1=1

the first n ones being the total differentiation operators, considered in Part II. For n =
m =1,k =2,we get & +y1 &+ ys 50— and 5.
Classically ([011986 BK1989 011995]) one associates to (£) its skeleton A¢, namely
the (n + m + p)-dimensional submanifold of .77’;# simply defined by the graphed equa-
tions:

(1.35) v, = FJ (l’ v, (y (< )>)1<q<p>

for (j,«) # (4,0) and # (3i(q), 3(q)) with |a| < k + 1. Clearly, the natural coordinates
on Ag are:

(@) _ (@) " fom
(1.36) (l" v (Vi) 1<, p> = (fC v (WG (q))1<q<p> € K" x K™ x K,

where \, := |3(q)] and (I1(q), ..., 1x,(q)) :== B(q).
Next, in view of the form (1.34) of the generators of (C7 Ztﬁ)L and in view of the
equations of Ag, the intersection

(1.37) CTH ) NTAg

is a vector subbundle of T'A¢ that is generated by n linearly independent vector fields
obtained by restricting the D; to Ag, which yields:

P

0 - if i i(a1) 0
Di = axz‘+ Z Ai( Y Y ql)) 8y3+
j=1

p
af .. J(a1) 9
+ZBZ( 17y yﬁ(ql))a ()7
L g=1 yﬁ(tz)

(1.38)
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1 =1,...,n, where the coefficients Ag and B are given by:
Al yf if the variable yf appears among the p variables yé((‘;ll));
Z F} otherwise;
(1.39) @ i@ | -
BY .— yf?l?(q) ----- I (9) it y;, fq) ..... Iy (g APPEATS aMONg the p variables y/, (‘;11 ¥
L 3(q)

F;,l1(q),...,lxq(q) otherwise.

Example 1.40. For (&), we get D = m + 1 81} + F(x, y yl) ; exercise: treat (&)
and (&3). For (£,), we get D = a:p +yi ayl + F2 57 + G . For (55) whose skeleton is
written yo = F, y111 = G, y12 = H, y1,12 = K, with F GG, H, K being functions of
(24, 2%y, y1,y1,1), we get

0 0 0 0
Di=s5+tung+tmaa-+G .
ox oy o Y11
(1.41) P 5 9 P ’
Dy=—+F—+H—+K )
2= o Ty T A T g,

Definition 1.42. The system (&) is completely integrable if the n vector fields (1 38)
satisfy the Frobenius integrability condition, namely every Lie bracket [D;,,D;,], 1
11,19 < n,is a linear combination of the vector fields D, ..., D,,.

Because of their specific form (1.38), we must then have in fact [D;,,D;,] = 0. For
n = 1, the condition is of course void.

§2. SUBMANIFOLD OF SOLUTIONS

2.1. Fundamental foliation of the skeleton. As the vector fields D; commute, they equip
the skeleton Ag ~ K"™™*? with a foliation Fo, by n-dimensional integral manifolds

which are (approximately) directed along the z-axis. We draw a diagram (see only the
left side).

(2)
A (yé(z))l<q<p J Yy

A
¢ A ) a, b
. D
s/a Yy ./
| s M(g) 7F
L Far . IFVV
A 0 A AL
: ' {r
. . . P—— . v
[—
D
expch )(0,a,b)

The (abstract, not numerical) integration of (£) is thus straightforwardly completed:
the set of solutions coincides with the set of leaves of Fa,. This is the true geometric
content, viewed in the appropriate jet space, of the assumption of complete integrability.
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2.2. General solution and submanifold of solutions. To construct the submanifold of
solutions M ¢y associated to (£) (sketched in the right hand side), we execute some ele-
mentary analytico-geometric constructions.

At first, we duplicate the coordinates (yé((?), v ) € K? x K™ by introducing a new

subspace of coordinates (a,b) € KP x K™; thus, on the left diagram, we draw a vertical
plane together with a- and b-axes. The leaves of the foliation Fa, are uniquely determined
by their intersections with this plane, consisting of points of coordinates (0, a, b) € K™ x
KP x K™.

Such points (0, a, b) correspond to the initial conditions (i’ E,q()q) (0),y(0)) for the general
solution of (&). In fact, the (concatenated, multiple) flow of {D;, ..., D,} is given by
(2.3)
exp (a:”Dn ( - (exp(2'D1(0, a, b))) - - - )) = (x, [(z,a,b), Qz,a, b)) e K'xK™xKP,

for some two local analytic maps IT = (IT!, ... II"™) and 2 = (2}, ..., QP) and the next
lemma is straightforward.

Lemma 2.4. The general solution of (€) is

(2.5) y(z) == 11(z, a,b),
where (a,b) varies in KP x K™. Furthermore, forq =1, ..., p:
(2.6) Q(w,a,b) = U (z,a,b).

This leads to introducing a fundamental geometric object.

Definition 2.7. The submanifold of solutions Vs (&) associated to (£) is the analytic sub-
manifold of K7 x KI" x KI x Kj" defined by the Cartesian equations:

(2.8) 0=—y +1l(x,a,b), j=1,....m

There is a strong interplay between the study of (£) and the geometry of Vs(E). By
construction, the diffeomorphism:
(2.9)

A : K"+ [coordinates (2°, af, b7)] — K"t HP [coordinates (xi, Yy, 3/?3((2))”

Az’ al, b)) = ( IV (z,a,b), H]B(q)(x a,b), >

sends the foliation F, by the variables x whose leaves are {a = cst., b = cst.} (see the
diagram), to the previous foliation Fa,.

2.10. PDE system associated to a submanifold. Inversely, let M be a submanifold of
K% x KJ' x K x K" of the form

(2.11) v =11(x,a,b), j=1,....,m

A necessary condition for it to be the complexification of a generic M C C"*™™ is that
p = n (answer to an exercise above).

Definition 2.12. M is solvable with respect to the parameters if b — 11(0,0,b) of rank
m at b = 0 and if there exist x > 1, multiindices 5(1),...,3(p) € N" with \ﬁ(q)] > 1
for ¢ = 1,...,p and maxi,<, |B(¢)] = K, together with integers j(1),...,j(p) with
1 < j(g) < m such that the local K-analytic map

2.13) K™ 3 (a,b) — <(Hj(0,a,b))1<j<m, <Hig{)q>(0,a,b)> ) c K™+

1<g<p

is of rank equal to m + p at (a,b) = (0,0)
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When M is the submanifold of solutions of a system (£), it is automatically solvable
with respect to the variables, the pairs (j(¢), 3(¢)) being the same as in the arguments of
the right hand sides F7 in (€). Proceeding as in §1.16, we may associate to M a system
of the form (£). Since we need introduce some new notation, let us repeat the argument.

Considering y = y(x) = Il(, a, ) as a function of z with extra parameters (a, b) and
applying 9l° /9z®, we get yo(z) = Ia(z,a,b). Writing only the relevant (m + p)
equations:

(2.14)

yi(ﬁq(zz) Hi(ﬁ()q) (ZL‘, a, b)v

{yj( v) =1V (z,a,b),

the assumption of solvability with respect to parameters enables to get

= A,y i),
i(q)

VY =Bl (as Yyt yﬂ(( ))

For every (j, ) # (j,0) and # (j(q), 3(¢)), we then replace (a, b) in yla = I/,

o (@) = W (2, A",y (2), g0 (), B, 7 (), 950) () )
= Fi(a' " (2), y)jty (0)).

Proposition 2.17. There is a one-to-one correspondence

(2.18) (Em) = (€) — M = M),

between completely integrable systems of partial differential equations of the general form
(&) and submanifolds (of solutions) M of the form (2.11) which are solvable with respect
to the parameters. Of course

(2.19) (Eme) = (E) and Mepy = M.

(2.15)

(2.16)

2.20. Transfer of total differentiations. We notice that the auxiliary functions A? and
B’ enable to express the inverse of A:

“L. (g gt g i @)\ pJ (q1)
@20 AT (2 ya)) — <x ATy ), B (e yé(ﬁﬂ)
More importantly, the total differentiation operator considerably simplifies when viewed

on M. This observation is useful for translating differential invariants of (£) as differen-
tial invariants of M.

Lemma 2.22. Through A, fori1 =1, ... n, the pull-back of the total differentiation oper-

ator D; is simply a?;i’ or equivalently:

(2.23) A*(%) —D,.

Proof. Let £ = ((z', 7, yé((‘é))) be any function defined on Ag. Composing with A yields
the function A := /o A, i.e.

(2.24) Alz, a,b) = e(x IV(x,a,b), 109 (z,a, b)).

Differentiating with respect to ¢, we get, dropping the arguments:
OA ol = ol ol

(2.25) Ori Ot + Z H:ﬂ Oy’ + L, IBW) 9 5,4@

j=1 Y8
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Replacing the appearing II7.. for which (j,a) # (4,0) and # (j(q), 3(q)) by FI, we

recover D; as defined by (1.38), whence gﬁi = D O

2.26. Transfer of algebrico-differential expressions. The diffeomorphism A may be
used to translate algebrico-differential expressions from M to (£) and vice-versa:

(2.27) L (T8 D) = Ny (20 F).
Here, A € N, the letter J is used to denote jets, and | = |y or = l(¢) is a polynomial or

more generally, a quotient of polynomials with respect to its jet arguments. Notice the
shift by x + 1 of the jet orders.

Example 2.28. Suppose n = m = 1 and k = 1. Then F' = II,,. As an exercise, let us
compute Fy, F,, F,, in terms of .J3 , , II. We start with the identity

(2.29) F(z,y,y1) = a2, A2, y,31), B(x,y,11)),
that we differentiate with respect to x, to y and to y;:

Fy = gy + oo Az + Wy Ba,
(2.30) F, = Hpza Ay + Uaap By,

F, = Hppe Ay, + Tagp By,

Thus, we need to compute A, A,, A,,, By, By, By,. This is easy: it suffices to differen-
tiate the two identities that define A and B as implicit functions, namely:

y =T1(z, A(z,y,9), B(z,y,51))  and

Y1 = HI (.Z', A(.?f, Y, yl)7 B([L’, Y, yl))
with respect to z, to y and to ¥y, which gives six new identities:

2.31)

O:Hx+Han+Hbea O:Hxx+Hzan+beBx7
(2.32) 1= II, Ay + II, By7 0= I, Ay + I By
0= 11, A, +11I, B, 1= e Ay, + 11 By,

and to solve each of the three linear systems of two equations located in a line, noticing
that their common determinant II;, II,, — II, II,; does not vanish at the origin, since II =
b+ za + Os. By elementary Cramer formulas, we get:

( A o _Hb Hx:c + Hx be B. — _HCC Ha:a + Ha H:m:
v Hb Hxa - Ha be ’ e Hb Hxa - Ha Har:b ’
_be Hma
2.33 A, = B =
( ) Y Hb Hxa - Ha be ’ Y 1_[b Hxa - Ha H:cb ’
Hb _Ha
\ s Hb Hxa - Ha Hmb ’ . Hb H:):a - Ha be
Replacing in (2.30), no simplification occurs and we get what we wanted:
( Hzxa —1II Hxx Ha: Hz H:ca: - Ha: Hma Ha HJ:J:
Fm:Ha:acJ:+ [ ’ al b]+ b[ i ]a
Hb Ha:a - Ha Ha}b
(234) F = _Hxa:a sz + Hx:cb H:r:a

v 1_[b H:ca - Ha Ha:b ’
Hzma Hb - Hmzb Ha
ne 1_[b Hza - Ha H:cb 7
One sees D I' = F, + 11, F, + 11, F,, = II,,, simply, as predicted by Lemma 2.22.
Second order derivatives F,, Foy, oy, Fyy, By, Iy, have still reasonable complex-
ity, when expressed in terms of J? , II. Beyond, the computations explode.

z,a,b
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Open question 2.35. A second order ordinary differential equation vy, = F(x,y,y,) has
two fundamental differential invariants, namely ([Tr1896, Ca1924, GTW 1989, O11995]):
(2.36)
O*F
I%gl) == and

I?Sl) = DD(Fylyl) - Fyl D(Fylyl) _4D<Fyy1) +6Fyy - 3Fy Fylyl +4Fy1 Fyyl'
Compute I}\,ll and I%\/ll-

Although the notion of diffeomorphism is clear and apparently obvious from the intu-
itive, geometric and conceptual viewpoints, in concrete applications and in explicit com-
putations, it almost never straightforward to transfer algebrico-differential objects.

Open problem 2.37. For general (£) and M, build closed combinatorial formulas exe-
cuting the double translation (2.27).

2.38. Plan for the sequel. We will endeavour a general theory showing that the study of
systems (£) and the study of submanifolds of solutions M gives complementary views
on the same object. In fact, Lie symmetries, equivalence problems, Cartan connections,
normal forms and classification lists may be endeavoured on both sides, yielding essen-
tially equivalent results, though the translation is seldom straightforward. In Section 3, 4
and 5, we review some features from the side (£), before studying some aspects from the
side of M. A more systematic and complete approach shall appear as a monography.

§3. CLASSIFICATION PROBLEMS

3.1. Transformations of PDE systems. Through a local K-analytic change of variables
close to the identity (z,y) — ¢(z,y) =: (2/,y’), the system () transforms to a similar
system, with primes:

(5/) y/i’“ (I,) = F/iz (Ila y/(x/)> (y/igg)m ($,)) 1<qu> ’

Example 3.2. Coming back temporarily to the notations of §1.12(II), with n = m =
k = 1, assume that y,, = f(x,y,y,) transforms to Yxyx = F(X,Y,Yy) through a local
diffeomorphism (z,y) — (X,Y) = (X(a:, y), Y (z, y)) How F is related to f ? By
symmetry, it suffices to compute f in terms of F', X, Y. The prolongation to Jﬁl of the
diffeomorphism has components ([BK1989, Me2004]):

Y, +v. Y,
(3.3) Vo=
x <y
and
v 1 (y X, Xy‘+‘Xx Xow | 4
XX = = xx
Yo+ X)) LoV Y Y
X, X X, X
e {o] B Ko || e Bl
G4 X x| | X x
. x vy | _ Ty Y
ny Xy
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It then suffices to replace Yx x above by F'(X, Y, Yy) and to solve y,,:

Y X, X, ([ e o) ( Xz—l—yny) ’ Yo Y
Y. Y,
Xx Xacy sz Xy
+yx-{_z’ o +‘ o }+
3.5
) + | X Xy +9 Xoy Xy 4
Yt Yo Yy Yoy Y,
Xy X
+ zYxYx * v Y ’})
YzYz Y {‘ Y,, Y,
=: (2,9, Ya)-
Open problem 3.6. Find general formulas expressing the FJ in terms of F'), x"", /7.

Conversely, given two such systems (£) and (£'), when do they transform to each
other ? Let 7, , denote the projection from J” f;; to Ag/ defined by

/ g g 13 R W Y B ¥ 1 ()
(37) 7T,§7p(x Y Y Yy in+1) T <$ Y ’yﬁ(Q)>'

Let go(”“) be the (x + 1)-th prolongation of ¢ (Section 1(ID)).

Lemma 3.8. ([O11986, BK1989, O11995]) The following three conditions are equivalent:
(1) ¢ transforms () to (£');
(2) its (k + 1)-th prolongation " : Frtl — j";f,i maps Ag to Ngr;

(3) Pt Tt — T ”:j; maps Ag to Agr and the associated map

(3.9) e e =, 0 (9" 4)

sends every leaf of Fa. to some leaf of Fa,,.

Equivalence problem 3.10. Find an algorithm to decide whether two given () and (E')
are equivalent.

Elie Cartan’s widely applicable method (not reviewed here; [Cal937, Ste1983, G1989,
HK1989, Fe1995, O11995]) provides an answer “in principle” to this question by reducing
to an {e}-structure an initial G-structure associated to (£). Due to the incredible size-
length-complexity of the underlying computations, this approach almost never abutes: it
is forced to incompleteness. But in fact, the main question is to classify.

Classification problem 3.11. Classify systems (£), namely provide complete lists of all
possible such equations written in simplified “normal”, easily recognizable forms.

Both problems are deeply linked to the classification of Lie algebras of local vector
fields. Forn = 1, m = 1 and k = 1, namely (&): y.. = F(z,y,y.), Lie and Tresse
solved the two problems3. Table 7 of [O11986], below reproduced, describes the results.

3The author knows no complete confirmation of the Lie-Tresse classification by means of E. Cartan’s
method of equivalence.
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| | Symmetry group | Dimension | Invariant equation |

@) | 9., €0, 2 Yox — Yo = F (yx — )

(5) || 0z, 0. — 0y, 220, — 2290, | 3 Yor = L + ey

(6) || Ox, 0 — Y0y, 3 Yoo = 63/3/1 — 4y
220, — (2zy + 1)0, +c(ye — y?)3/?

) | 02, 8, 20, + s, 3 Yoz = C(yy) ot
a#0,1,1,2

8 || Oz, 0y, 0, + (z + y)0, 3 Ypo = CE Y2

9) || Oz, Oy, YOu, 0y, YOy, 8 Ygz = 0

120, + xydy, Tyd, + y*9,

Table 1.

However, the author knows no modern reference offering a complete proof of this clas-
sification, with precise insight on the assumptions (some normal forms hold true only at
a generic point). In addition, the above Lie-Tresse list is still slightly incomplete in the
sense that it does not precise which are the conditions satisfied by F' (Table 7 in [O11986])
insuring in the first four lines that S (&) is indeed of small dimension 0, 1 or 2.

Open question 3.12. Specify some precise nondegeneracy conditions upon F' in the first
four lines of Table 1.
§4. PUNCTUAL AND INFINITESIMAL LIE SYMMETRIES

4.1. Lie symmetries of (£). Let ¢ = (¢,%) be a diffeomorphism of K x K} as
in (1.7)I).

Definition 4.2. ([O11986, 011995, BK1989]) ¢ is a (local) Lie symmetry of (£) if it
transforms the graph of every solution of (£) into the graph of another solution.

To explain, we must pass to jet spaces. Denote the components of the (x + 1)-th
prolongation ("1 . FxFL — Frtl by

(4.3) P = (@ O B Ry )
The restriction (1) ‘ Ae is obtained by replacing each jet variable y/ by FJ, whenever

(j,) # (4,0) and # (j(q), B(q)), and wherever it appears* in the CIDgl
Let 7, denote the projection from 77! to Ag ~ K™*"*7 defined by
(44) 7Tn,p (ajia ij yzjlv cety yi1 ..... in+1) = ($i7 yja yé(((é))> )

and introduce the map

(4.5) pae = mepo (¢UY|, ) = (@( y), @40 (2,17 gy ))))
Lemma 4.6. ([O11986, 011995, BK1989], [*]) The following three conditions are equiv-

alent:

_4Remind from Section 1(II) that we have not (open problem) provided a complete explicit expression of
@] ; forgeneraln >1,m >1and X > 1.

T15enes i
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(1) the diffeomorphism ¢ is a Lie symmetry of (£);
(2) pth) ’Ag sends Ag to Ag;

(3) ) ’Ag sends Ag to Ag and pp, = ., (Y ‘Ag) is a symmetry of the folia-
tion Fa,, namely it sends every leaf to some other leaf.

Then the set of Lie symmetries of (£) constitutes a local Lie (pseudo)group.

4.7. Infinitesimal Lie symmetries of (£). Let

(4.8) L= ; X (©,9) 3.5

be a (local) vector field on K" having analytic coefficients. Denote its flow by
oi(z,y) = exp(tL)(x,y), t € K. As in Section 1(II), by differentiating the prolon-
gation (ip,)" 1) with respect to ¢ at t = 0, we get the prolonged vector field £**1) on
Jj’#, having the general form (Part II):

4.9) £+ = £+ZZY£8—J+“'+Z >, Y. Waya‘L’

j=1 i1=1 J=1 i1,int1=1 (A PR
with known explicit expressions for the Y7,

Definition 4.10. £ is an infinitesimal symmetry of (&) if for every small ¢, its time-¢ flow
map ¢, is a Lie symmetry of (&).

The restriction £*1)| A, 18 obtained by replacing every v/ by F7 in all coefficients

Y’/ ..., Y] . . Then the coefficients become functions of ( EIVES yﬁ((ql))) only.

717 ) 150eey 1k+1

Lemma 4.11. ([O11986, O11995, BK1989], [*]) The following three conditions are equiv-
alent:

(1) the vector field L is an infinitesimal Lie symmetry of (£);

(2) its (k + 1)-th prolongation L+ is tangent to the skeleton Ag;

(3) £V is tangent to A¢ and the push-forward

(4.12) Lag = (mep)e (L],
is an infinitesimal symmetry of the foliation Fa,, namely for every i = 1,... n,
the Lie bracket [EAS, Di} is a linear combination of {D1,...,D,}.

According to [O11986, BK1989, O11995], the set of infinitesimal Lie symmetries con-

stitutes a Lie algebra, with the property [L (wtl) ! (~+1) } [E L' } "+ We summarize
by a diagram.

1
mnJ; & 1 = mnJr ! (5D
mnT p mnmy p
1 \ \
mnya
mnAg £ > mnf\¢ mnla,
mn7f, mnm,
mnr, mnfg,
Yy Yy
mne

mnKy x Kt > mnKy x K mnLl
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4.13. Sophus Lie’s algorithm. We describe the general process. Its complexity will be
exemplified in Section 5 (to be read simultaneously).

The tangency of L1 to A¢ is expressed by applying £*+1) to the equations 0 =
—yJ + F7, which yields:

(4.14) =Y + Z X’

Zylal

for (7,a) # (4,0) and # (j(q),5(q)). Restricting a coefficient Yfl to Ag, namely
replacing everywhere in it each y/ by FJ, provides a specialized coefficient

ﬁ(q)

(415) ?il ) :?] ) ( ’yh yﬂ J)\ X J)\ yjl)’

) Ty ’TxY

that depends linearly on the A-th jet of the coefficients of £, as confirmed by an inspection
of Part II's formulas. Here, we use the jet notation J} | Z := (92100 Z) . We

] o [+]B1]<A
thus get equations

(4.16) 0=-Y/ + Z XZ

ZJ’Z

involving only the variables ( uogydt yﬁ((((];l)))

DR
Bla) o i(q)’
q=1 ayﬂ(q)

Next, we develope every such equation with respect to the powers of y ﬁ((qql))

@IT) 0= 30 B O Wy (57 TR TV,

,,,,,

The W), ,, . are linear with respect to (J5/' X", J5i1)7"), with certain coefficients

analytic with respect to (z,y), which depend intrinsically (but in a complex manner) on
the right hand sides F”.

Proposition 4.18. The vector field L is an infinitesimal Lie symmetry of (£) if and only if
its coefficients X', Y7 satisfy the linear PDE system:

(419) 0= \Ijiv . (xil’y.h’ Jg—z&;lxu? J;—;J—lyjl)

for all (j, @) # (5,0) and # (j(q), B(q)) and for all (. . ., pp) € NP.

In all known instances, a finite number of these equations suffices.
Example 4.20. With n = m = s = 1, a second prolongation £?) = X g—x +Y a% +

Y, % +Y, % is tangent to the skeleton 0 = —ys + F'(x,y,y;) of (£;) if and only if
O0=-Yy+XF, +YF,+ Y, F,, or, developing:

0= _y:m: + |:_ 2yzy + sz] Y1+ [_ yyy + Q'wa] (y1)2 + [ny} (y1>3+
4.21) + [ =V +2X] F+ BXy F+ [X] Fo+ [V] B+
D}m} Fy1+[yy ]yle1+[ Xy] (yl)ngr

Developing F' = ", - (1) Fx(,y), we may obtain equations (4.19).

§5. EXAMPLES

5.1. Second order ordinary differential equation. Pursuing the study of (£;), according
to Section 7 below, we may assume that 7" = O(y,,), or equivalently F'(x,y,0) = 0.
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Convention 5.2. The letters R will denote various functions of (z,y, y;), changing with
the context. Similarly, r = r(z,y), excluding the pure jet variable y;. Hence, symboli-
cally:

(5.3) R=r+uyir+ @)’ r+m)’r+ -,
So the skeleton is
(5.4) y2 = F(z,y,90) =i R=yir+ ()’ r+ ()’ r + - -
Applying L), see (2.3)(II) for its expression, we get:
(5.5) O0=—Yo+XF, +YF,+Y 1 F,.

Observe that F, = (11 R), = ry; +r(y1)? + - - - and similarly for F,, but that (y; R),, =
r+ry.+r(y1)?+---. Inserting above Y1, Yy given by (2.6)(Il), replacing y» by y; R and
computing mod (y; )%, we get:

0= =Yoo+ [ = 2Vuy + Xoo] 1 + [ = Vi + 28] (1) + [X,] (11)°+
=V +2X] (yir+ W)’ r+ w)°r) + [3X] ((n1)*r+ (1)’ r)+
(5.6) + [ X] (yrr+ )" v+ @) 0) + [Y] (mr+ )"+ () )+
+ ] (i + ) r+ ()’ r)+
+ [V =X (ir+ w)*r+ @)°r) + [ = %] ((n)*r+ ()°r).
We gather the powers cst., y1, (1)? and (y1)?, equating their coefficients to 0:
0= -V +P(s),
0= -2V + Xow + P(Vy, X, X, YV, Vs),
0=y + 2 Xy + P(Vy, Xo, X, X, V, Vo),
0=, +P(Vy, X, X, X, Y, Vs)

Convention 5.8. The letter P will denote various linear combinations of some precise
partial derivatives of X', )V which have analytic coefficients in (x, y).

5.7

By cross-differentiations and substitutions in the above system, all third, fourth, fifth,
etc. order derivatives of X', ) may be expressed as P(X, Y, X,, Xy, Vo, Yy, Vayr Yy ) -

Proposition 5.9. An infinitesimal Lie symmetry X a%+y a% of (&1) is uniquely determined
by the eight initial Taylor coefficients:

(5.10) X(0), ¥(0), X,(0), X,(0), Y (0), Yy(0), Viy(0), Yy (0).
The bound dim GYM(E;) < 8 is attained with F' = 0, whence all P = 0 and
A =0, E :=y0,,
B :=0,, F:=y0,,
(5.11)

C :=x0,, G :=xx 0, + 2y 0y,
D :=x0,, H =2y 0, +yy 0,.

are infinitesimal generators of the group PGL3(K) = Aut(P»(K)) of projective transfor-
mations

(5.12)

ar+Py+vy dx+ny+e
(:I;?y)'—) Y Y
Xe+py+v A+ puy+v

stabilizing the collections of all affine lines of K2, namely the solutions of the model
equation y,, = 0. The model Lie algebra pgl;(K) ~ sl3(K) is simple.
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Theorem 5.13. The bound dim SYM(E,) < 8 is attained if and only if (&) is equiva-
lent, through a diffeomorphism (z,y) — (X,Y), t0 Yxx = 0.

Proof. The statement is well known ([Lie1883, EL1890, Tr1896, Sel1931, Cal932a,
011986, HK1989, 1b1992, 011995, Sh1997, Su2001, N2003, Me2004]). We provide a
(new?) proof which has the advantage to enjoy direct generalizations to all PDE systems
whose model Lie algebras are semisimple, for instance (&5), (£3) and (&s).

The Lie brackets between the eight generators (5.11) are:

| A | B |C b |E |F |G |H
A0 0 0 0 |4 [B_[C D +2F
B0 0 A B |0 |0 E+2D | F
C 0 —A 0 —C[C [D-F|0 G
D0 ~B C 0 |0 |-F |G 0
E -4 0 —C__J0_ [0 _[F |0 H
F -5 0 "Dt E|F |—F |0 i 0
G[-C “E—2D 0 —G[0 |[H |0 0
H[-D-2E|—F G |0 |—-H]|0 0 0

Table 2.

Assuming that dim S (E;) = 8, taking account of (5.7), after making some linear
combinations, there must exist eight generators of the form

A =9,+0(1), E' =y, +0(2),

51 B =9, +0(1), F'=y0,+0(2),
C" =2z, +0(2), G' =110, + 2y 0, + O(3),
D' :=x0,+0(2), H :=xyd,+yyd,+O0(3).

To insure that the Lie brackets between these vector fields are small perturbations of the
model ones, we can in advance replace (x,y) by (ez,y), so that y,, = ¢ F’ (531:, ey, yx)
is an O(e), hence all the remainders O(1), O(2) and O(3) above are also O(e). It follows
that the structure constants for A’,..., H' are e-close to those of Table 2.

Theorem 5.15. ([OV1994]) Every semisimple Lie algebra over R or C is rigid: small
deformations of the structure constants just give isomorphic Lie algebras.

Consequently, there exists a change of basis close to the identity leading to new gener-

ators A”, B”,...,G", H" having exactly the same structure constants as in Table 2. Then
A”(0) and B"(0) are still linearly independent. Since [A”, B”] = [A, B] = 0, there
exist local coordinates (X,Y’) centered at 0 in which A” = Ox and B” = 0y. Since

[A”,C"] = [A,C] = 0and [B",C"] = [B,C] = A, it follows that C" = X9y. The
tangency to 0 = —Y; + F(X,Y,Y7) (with F(0) = 0) of (8X)(2) = Oy, of (Oy)@) = Oy
and of (Xdy)® = Xy + oy, yields F = 0. 0

Open question 5.16. Does this proof generalize to yx+1 = F(x, Yy Yy« o - s yzn) ?

5.17. Complete system of second order. We now summarize a generalization to (&,).
According to Section 7 below, one may assume that the submanifold of solutions is
y = b+ Y0, d[z' + O(z*) + O(a) + O(b)], whence yyirzis = Fiy iy (@' y, Yur)
with F(z,y,0) = 0. Applying to the skeleton 0 = —y;, ;, + F}, ;, (2%, 9, yx) a second
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prolongation £ having coefficients Y;, given by (3.9)(I) and Y, ;, given by (3.20)(II),
we get

_ k 11 72 0E17i2 g 8E1,i2
I R Mk e S o IOETS

Replacing y;, ;, everywhere by Fim’z =1y R+ - -+ y, R, developping in powers of the
pure jet variables y; and picking the coefficients of cst., of y, of (yx)? and of ()3, we
get the linear system

5.19

21 @9 Z2y 1ly

5“ Xk _

P
5k y i2y + 5k y ’Lly szle - P
P
P
11,82
upon which obvious linear combinations yield a known generalization of Proposition 5.9.
Proposition 5.20. ([Su2001, GM2003a]) An infinitesimal Lie symmetry y ,_, X k % +
Yy % is uniquely determined by the n? + 4n + 3 initial Taylor coefficients:
(5.21) X'(0), ¥(0), X% (0), X(0), Yar(0), Yy(0), Vaiy(0), Yy (0)-

The bound dim SYM(E>) < n? +4n + 3 is attained with F;, ;, = 0, whence all P = (
and

A= 0,, E:=y0,,
B; = 0., Fi =y 0.,
(5.22) C;=1'0,, G, =1 (1:1 Opt + -+ + 2" Opn + yﬁy) + 2y 0y,
Diy =" Oy, H::y(a:laxl+~~~+x”0xn+y(9y).

are infinitesimal generators of the group PGL,.2(K) = Aut(P,.1(K)) of projective

transformations
ot + o+ Pyt Gt 0"y +e
(5.23)  (z,y) ) ;
Azt Nt py vt At e+ A+ py v
stabilizing the collections of all affine planes of K", namely the solutions of the model
equation y,i,i, = 0. The model Lie algebra pgl,,,(K) ~ sl,.5(K) is simple, hence
rigid.
Theorem 5.24. The bound dim GYM(E;) < n? + 4n + 3 is attained if and only if (&)
is equivalent, through a diffeomorphism (z',y) — (X*,Y), to Yyr, xr, = 0.

The proof, similar to that of Theorem 5.13, is skipped.
The study of (£3) also leads to the model algebra pgl,,, ,(K) =~ 5[, 5(K) and an analog
to Theorem 5.13 holds. Details are similar.

§6. TRANSFER OF LIE SYMMETRIES TO THE PARAMETER SPACE

6.1. Stabilization of foliations. As announced in §2.38, we now transfer the theory of
Lie symmetries to submanifolds of solutions.

Restarting from §4.1, let ¢ a Lie symmetry of (£), namely ¢a, stabilizes Fa,. The
diffeomorphism A defined by (2.9) transforms F, to Fo,.. Conjugating, we get the self-
transformation A~ o o, o A of the (x, a, b)-space that must stabilize also the foliation
F.. Equivalently, it must have expression:

(6.2) [A_l 0 YA, O A} (z,a,b) = (H(x, a,b), f(a,b),g(a, b)) e K" x K x K™,
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where, importantly, the last two components are independent of the coordinate z, because
the leaves of F, are just {a = cst., b = cst}.

Lemma 6.3. To every Lie symmetry o of (£), there corresponds a transformation of the
parameters

(6.4) (a,b) — (f(a,b),g(a,b)) =: h(a,b)

meaning that o transforms the local solution y,,(x) := Il(x, a,b) to the local solution
Yh(a,b) (ZL‘) = H((L’, h(av b))
Unfortunately, the expression of A~! o oA, o A does not clearly show that f and g are

independent of x. Indeed, reminding the expressions of A and of ®, we have:

(6.5) @a. oAz, a,b) = (go(x,l_[(x,a, b)), @;((i)) (:B“,Hjl(:v,a,b),l_[i%q({l)l)(x,a, b)))

To compose with A~! whose expression is given by (2.21), it is useful to split ¢ =
(p,1) € K* x K™, so above we write

(6.6) p(z, (z,a,b)) = (6(, (2, a,b)), ¥ (2, 1I(z, a,b))),
and finally, droping the arguments:
67)  [A " opa, oAl a,b) = (¢, A7(¢", 07 @U0)), B (o7, 0", @),

In case (£) = (£1), is an exercise to verify by computations that the A?(-) and Bi(")
are independent of . In general however, the explicit expression of ®]  ; “is unknown.

Unfortunately also, nothing shows how (f(a, b), g(a, b)) is uniquely associated to ¢ (z, y).
Further explanations are needed.

6.8. Determination of parameter transformations. At first, we state a geometric refor-
mulation of the preceding lemma.

Lemma 6.9. Every Lie symmetry (x,y) — @(z,y) of (£) induces a local K-analytic
diffeomorphism

(6.10) (x,y,a,b) — (gp(m,y),h(a,b))
of K x K" x KE x Ki" that maps to itself the associated submanifold of solutions
(6.11) Mgz{(:p,y,a,b) : y:H(x,a,b)}.

Proof. In fact, we know that the n-dimensional leaf {(x, II(z,a, b)) T x € K”} is sent
{(z,11(z, h(a,b))) : = € K"}. O

Equivalently, setting ¢ := (a,b) and writing (¢, h) = (¢,, h), we have ¢ = T1(¢, h)
when y = II(z, ¢), namely

(6.12) Y(z,(z,c)) = H(P(z, (z, c)), h(c))
Proposition 6.13. There exists a universal rational map H such that
(6.14) h(c)=H (J;ﬁ, (z,c), J; oz, 1(z, c)))

This shows unique determination of h from ¢, given (£) or equivalently, given II.



LIE SYMMETRIES AND CR GEOMETRY 19

Proof. Differentiating a function y(z,II(z,c)) with respect to z*, k = 1,...,n, corre-
sponds to applying to  the vector field
0 L oIl 0
6.15 Ly := — —_— — E=1,...,n.
( ) k 3mk + Z al'k (.CE, C) ayg ) ) y TV

j=
Thus, applying L, to the m scalar equations (6.12), we get

(6.16) Ly = i;i Le ¢,

for 1 < k <nand1l < 5 < m. It follows from the assumption that ¢ is a local

diffeomorphism that det (L, ¢'(0)) Ei’;

I, above: there exist universal polynomials S{ such that

) i i 1</ <n+m

(6.17) o _ S ({be e han™)
' o' det(Ly @) ST
1<k <n

# 0 also. So we may solve the first derivatives

Again, we apply the L, to these equations, getting, thanks to the chain rule:

) ; 7 1< <n+m
| "L 9%l g Ri, & <{L’f’1|‘ké90 }1<k’1,k/2<n)
(6- 8) axllxb k‘¢ - 1<l/'<n 2
l/ <V =
la=1 [det(Lk/ b )1<k,<n]

Here, R/ , are universal polynomials. Solving the second derivatives I, , , we get
li,k zlipl2

: g Lo o 1<i’<n+m>
(6.19) o1 _ Slhl? <{Lk1|‘k290 }1<k’1,k§<n '

I1pl ’ 3
N T

1<k <n

By induction, for every 3 € N™:

i 1 g 1< <ntmy
ol Sh <{Lﬁ LA )
(6.20) - ,
oxP N I<U<n 2|B]+1
[det(l-k’ ¢ )1<k’<n]

where Sé are universal polynomials. Here, for 3’ € N”, we denote by L?' the derivation
of order |3'| defined by (L, )% - - - (L, ).

Next, thanks to the assumption that M is solvable with respect to the parameters, there
exist integers j(1),...,j(p) with 1 < j(¢) < m and multiindices 5(1),...,3(p) € N*
with |3(q)| > 1 and max;<,<, |5(¢)| = & such that the local K-analytic map

, <m [ OP@ITTI(@)
621) K3 c— | (TF(0,0)' Y [ =——=—(0,¢) € Kptm
81‘5(‘1) 1<q<p

X

has rank p+m at ¢ = 0. We then consider in (6.20) only the (p+m) equations written for
(7,0), ((q), B(q)) and we solve h(c) by means of the analytic implicit function theorem:

(6.22)
J(1) 1</ <n+m i(p) g i 1</ <n+m
A1) <{L 131181 )\) S5n) ({L ¥ |ﬁ’\<|ﬁ(p)l)

~

h=H

<ren } 217

/ 2|B(p)|+1
l’ 1<l/'sn
det |: Lk/gzﬁ 1<k/<n ]

det [(Lk’ ¢l,) 1<k <n
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Finally, by developping every derivative L% ¢* (including L, ¢' as a special case), taking
account of the fact that the coefficients of the L, depend directly on II, we _get some
universal polynomial P g (J A J;‘,;B y| @ ) Inserting above, we get the map H. O

6.23. Pseudogroup of twin transformations. The previous considerations lead to intro-
ducing the following.

Definition 6.24. By G, ,, we denote the infinite-dimensional (pseudo)group of local K-
analytic diffeomorphisms

(6.25) (9, a,0) — (o2, ), h(a, b))
that respect the separation between the variables and the parameters.

A converse to Lemma 6.3 holds.

Lemma 6.26. Let M be a submanifold y = 11(z, a, b) that is solvable with respect to the
parameters (a,b). If a local K-analytic diffeomorphism (z,y,a,b) — (¢(z,y), h(a,b))
of Ki x K" x KE x K belonging to G, , sends M to M, then (z,y) — ¢(z,y) is a Lie
symmetry of the PDE system & associated to M.

Proof. In fact, since (¢, h) respects the separation of variables and stabilizes M, it re-
spects the fundamental pair of foliations (F,,F,), namely {(a,b) = (ag,bo)} N M is
sent to {(a,b) = h(ao,bo)} N M and {(z,y) = (zo,y0)} N M is sent to {(z,y) =
©(x0,y0)} N M. Hence pn,  also stabilizes Fa,. O

Corollary 6.27. Through the one-to-one correspondence (£) «—— M of Proposi-
tion 2.17, Lie symmetries of (£) correspond to elements of G, , which stabilize M.

Definition 6.28. Let Aut, ,(M) denote the local (pseudo)group of (¢, h) € G, , stabiliz-
ing M. Let Lie(£) denote the local (pseudo)group of Lie symmetries of (£).

In summary:

(6.29) Lie(€) =~ Aut,,(Mg)) and Aut, ,(M) =~ Lie(En) |

6.30. Transfer of infinitesimal Lie symmetries. Let £ € GYM(E), i.e. La, is tangent
to Ag. Through the diffeomorphism A, the push-forward of £, must be of the form

) Z@lxab——l—z.?:qab——i-zg]ab

where the last two families of K-analytic coefficients 77 and G’ depend only on (a, b).

(6.31) Y(La,)

Lemma 6.32. To every infinitesimal symmetry L of (£), we can associate an infinitesimal
symmetry

p m
0 0
* L q i
(6.33) L= Fa,b) ot Z G (a,b) 0
g=1 j=1
of the space of parameters which tells how the flow of L acts infinitesimally on the leaves
of Fag. Furthermore, L + L* is tangent to the submanifold of solutions M g).

Considering the flow of £ + L£* reduces these assertions and the next to the arguments
of the preceding paragraphs. So we summarize.
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Lemma 6.34. Let M be a submanifold y = 1l(x,a,b) that is solvable with respect to
the parameters (a,b). If a vector field that respects the separation between variables and
parameters, namely of the form

(6.35)

- - 0 o . 0 P o moo o
* — (2 ] q J
L+L ; X2, y) 5 + E Vi(z,y) g T ;:1 Filab) 5+ ;:1: G'(a,b) 55

Jj=1

is tangent to M, then L is an infinitesimal Lie symmetry of (5 M)

Corollary 6.36. Through the one-to-one correspondence (£) «—— M of Proposi-

tion 2.17, infinitesimal Lie symmetries of (€) correspond to vector fields L + L* tangent
to M.

Definition 6.37. Let G (M) denote the Lie algebra of vector fields £ + L£* tangent
to M. Let GYM(E) denote the Lie algebra of infinitesimal Lie symmetries of (£).

In summary:

(6.38) |SYM(E) ~ SYM(Mg)) and SYM(M) ~ &YM(Enm) |

6.39. Dual defining equations. As in §2.10, let M C Ki x K x K x Ki* given by

0 = —y + Il(x,a,b) and assume if to be solvable with respect to the parameters. In
particular, we can solve the 7, obtaining dual defining equations

(6.40) ¥V =1"(a,z,y), j=1,...,m,
for some local K-analytic map map IT* = (IT*!, ... II*™) satisfying
(6.41) b=II* (a, z,1(x, a, b)) and y= H(m, a,11*(a, z, y))

6.42. An algorithm for the computation of S)9(M). The tangency to M is ex-
pressed by applying the vector field (6.35) to 0 = —y’ + I17(z, a, b), which yields:

n p
0= _yj(l.7y) + Z XZ(Ivy) Hii(xaaab) + Z qu(a’ b) Hiq(x,a, b)

i=1 q=1

(6.43) -
+> G (a,b) 1T, (x, a,b),
=1

for j = 1,...,m and for (z,y,a,b) € M. In fact, after replacing the variable y by

II(x, a,b), these equations should be interpreted as power series identities in K{z, a, b}.
Denote by A(x,a,b) the determinant of the (invertible) matrix (Hil(x, a, b))1 <li<m

and by D(z, a, b) its matrix of cofactors, so that IT, ' = [A]~! D. Hence we can solve G

from (6.43):

(6.442

G(a,b) = —ZZ V(z,(z,a,b)) — Z X' (z,11(z, a,b)) I (z,a,b)—

— " FUa,b) Uy, a,b) | .

\ a=1
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Next, we aim to solve the F%(a,b). Consequently, we gather all the other terms in the

brackets as Wo(J} , 1T, X, V):
D(z,a,b) & . Wo(J; 000, X, D)
R = — | — Haq y &y —
(6.45)  G(a,b) Alr.ab) [ ;:1 F(a,b) pa(z,a,b)| + Az a.0)

Here, U, is linear with respect to (X', )), with polynomial coefficients of degree one in
J;,a,bH'

Next, for k = 1,...,n, we differentiate this identity with respect to x;. Then G(a, b)
disappears and we chase the denominator A?:

(

p
> FUa,b) Hyou(, a,b)

0= [AD] +
q=1
(6.46) p
+[AD,, — A, D] [— Z Fi(a,b) e (z,a,b)| +
q=1
\ + U (7 1L T, X T Y).

The W}, are linear with respect to (J; X, J; | J), with polynomial coefficients in .J2 , ,II.
Then we further differentiate with respect to x and by induction, for every 7 € N, we
get:

(OE [A D]

p
_Z fq(a7b) Haqxﬁ(xaaab) +

q=1

+ Z Dﬁﬁl(JWl'“H)
|B11<B]

+ (O TP TP,

’ x?y ’ x?y

(6.47)

p
- Z .’,E'(I<a7 b) Haqxﬂl ('ra a, b) +

g=1

where the expressions Dg 5, are certain m x m matrices with polynomial coefficients in
the jet Jf;';rlﬂ, and where the terms \IJB(JMHH, JO X, JEY) are linear with respect

) z,a,b
to (JiX, J5Y), with polynomial coefficients in .J)’ % 'L,
Writing these identity for (j7,5) = (j(q),6(¢q)), ¢ = 1,...,p, reminding
maxi<,<p |5(¢)] = k, it follows from the assumption of solvability with respect

to the parameters (a boring technical check is needed) that we may solve
(6.48)  F(a,b) = ®U(JiH i (z, a,b), JE X (2, 1(z, a,b)), J5, V(z,11(z,a,b))),

z,a,b Ty )
for ¢ = 1,...,p, where each local K-analytic function ®, is linear with respect to
(JrX,J"Y) and rational with respect to J&HI, with denominator not vanishing at
(x,a,b) :=(0,0,0).
Pursuing, we differentiate (6.48) with respect to 2! for [ = 1,...,n. Then F%(a,b)
disappears and we get:

(6.49) 0=, (Ji (z, a,b), JiT X (2, 1z, a,b)), Jot ' V(2 (z, a,b))),

z,a,b YLy Y x,y
for1 < g <pand1 <[ < n. In (6.46), we then replace the functions F? by their values
P9

(6.50) 0=V, (JrH(z,a,b), J5, X (z,1(z,a,b)), JF V(z,(z,a,b))),

z,a,b ’TxY P TEy

for1 < k < nand1 < j < m. Then we replace the variable b by I11*(a, z,y) in the
two obtained systems (6.49) and (6.50); taking account of the functional identity y =
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I1(z,a,1I*(a, z,y)) written in (6.41), we get

z,a,b Yy 'Yy

0 E\I/;w(J”HH(x a, ¥ (a, z,y)), J5 X (2, y), J5 V(z,y)).

) x,y

(6.51)

z,a,b » YTy

{0 =P, (JH+2H($ a,T*(a,2,7)), JEE X (2, y), JEH YV (a, ))7

Finally, we develope these equations in power series with respect to a:

0= a" O (2,y, T X(x,y), JE5 V(2. y)),

yENP

0= > a" Wy (2,9, 5, X (@, y), J5,V(@,1)),

yENP

(6.52)

where the terms @, ., and W, ; , are linear with respect to the jets of X', V.

Proposition 6.53. A vector field (6.35) belongs to SYIM(M) if and only if X*, Y satisfy
the linear PDE system

{OE(I)q,l,’y(xay7 J;Jyrl‘)(( )7‘];;;1‘)}( ))’

(6.54) ) )
0=k (2., 7, X (2, 9), J7, V(@ y),

where1 < q<p 1<1<n 1<k<nand~y € NP. Then F? defined by (6.48) and G’
defined by (6.45) are lndependent of x.

This provides a second algorithm, essentially equivalent to Sophus Lie’s.

Example 6.55. For y,,(z) = F(x,y(z), y.(x)), the first line of (6.54) is (the second one
is redundant):

(6.56)
( 0=4&x [_Ha:aHa:aca:Hb + HaH:L’bH:mca: - HszxaHmb + H:L‘aHa;Ha:acb +

ol Iy — L0 10| +
+ YV [Healligs + Hazalles] +
+ Xy [ 20 o Iy + 200, o gy + TL I 00 — oo Ipg] +
+ Vo [0 + o Mo0] +
+ A, [~ 310,11, 11,11y + 3T, ILIL,, Ly, + ()2 T, 0 — (IL,)? M0, +
X + Yy Mooyl — e I Ty — TL T 0 + TL 11,10 ,0) +
+ Xy 11 Hme + I, IT, I, +
+ Xy [—2(1,) T, + 2(11, ) *T1 1T, | +
+ X, [—( 3Hme + (1) T T | +
+ Vao Il — Holl) +
+ Vay [211, Hme 20111, 11,] +
+ V2 [(H)* 110, — (I1,)T1,10,,) -

\

We observe the similarity with (4.19): the expression is linear in the partial derivatives of
X, Y of order < 2, but the coefficients in the equation above are more complicated. In
fact, after dividing by —II, I, + II, II,;, this equation coincides with (4.21), thanks to
II, = y1 and to the formulas (2.34) for F,, F,, I},.



24 JOEL MERKER

6.57. Infinitesimal CR automorphisms of generic submanifolds. If the system (&) is
associated to the complexification M = (M )¢ of a generic M C C"*™ as in §1.16, then
a=(2) = (b= (w) = &, and the vector field L* associated to an infinitesimal Lie
symmetry

= v - J -
(6.58) L ;é; Xi(z,w) 8Zi4-;§; Yz w) 5

of (€) is simply the complexification £ of its conjugate £, namely

A 0 = o 0
R R

Then the sum £ + L is tangent to M and its flow stabilizes the two invariant fo-
liations, obtained by intersecting M by {(z,w) = cst.} or by {((,{) = cst.}.
In [Me2005a, Me2005b], these two foliations, denoted F, F, are called (conjugate)
Segre foliations, since its leaves are the complexifications of the (conjugate) classi-
cal Segre varieties ([Se1931, Pi11975, Pi1978, Wel977, DW1980, BJT1985, DF1988,
BER1999, Su2001, Su2002, Su2003, GM2003a]) associated to M, viewed in its ambient
space C"*™, The next definition is also classical ([Be1979, Lo1981, EKV1985, Kr1987,
KV1987, Be1988, Vi1990, St1996, Be1997, BER1999, L02002, FK2005a, FK2005b]):

Definition 6.60. By hol(M) is meant the Lie algebra of local holomorphic vector fields
L=30" X(zw) 2+ >y Vi(z,w) 52 whose real flow exp (¢£)(z,w) induces
one-parameter families of local biholomorphic transformations of C"*™ stabilizing M.

Equivalently,
(6.61) 2ReL.=L+L
is tangent to M. Again equivalently, £ + L is tangent to M = M°.

Then obviously hol(M) is a real Lie algebra.

Theorem 6.62. ([Cal932a, BER1999, GM2004]) The complexification hol(M )@ C iden-
tifies with 6@971(5 (M C)) Furthermore, if M is finitely nondegenerate and minimal at
the origin, both are finite-dimensional and hol(M ) is totally real in GYIM (E(M?)).

The minimality assumption is sometimes presented by saying that the Lie algebra gen-
erated by T°M generates T'M at the origin ([BER1999]). However, it is more natural
to proceed with the fundamental pair of foliations associated to M ([Me2001, GM2004,
Me2005a, Me2005b]). Anticipating Sections 10 and 11 to which the reader is referred,
we set.

Definition 6.63. A real analytic generic submanifold M C C™*™ is minimal at one of its
points p if the fundamental pair of foliations of its complexification M is covering at p
(Definition 10.17).

Further informations may be found in Section 10. We conclude by formulating appli-
cations of Theorems 5.13 and 5.24.

Corollary 6.64. The bound dim hol(M) < 8 for a Levi nondegenerate hypersurface
M C C2? is attained if and only if it is locally biholomorphic to the sphere S C C2.

Corollary 6.65. The bound dim hol(M) < n? + 4n + 3 for a Levi nondegenerate hy-

persurface M C C"*1 is attained if and only if it is locally biholomorphic to the sphere
S2n+1 C (Cn—l—l.
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§7. EQUIVALENCE PROBLEMS AND NORMAL FORMS

7.1. Equivalences of submanifolds of solutions. As in §3.1, let (£) and (£’) be two PDE
systems and assume that ¢ transforms (€) to (£’). Defining A’ similarly as A, it follows
that

(7.2) Ao Pe g0 Az, a,b) = (9(30, a,b), f(a,b), g(a, b)) =: (2/,d',b)

transforms F, to F/, hence induces a map (a,b) — (a’,b'). The arguments of Section 6
apply here with minor modifications to provide two fundamental lemmas.

Lemma 7.3. Every equivalence (x,y) — (2',y’) between to PDE systems (£) and (E')
comes with an associated transformation (a,b) — (a’,V') of the parameter spaces such
that

(7.4) (z,y,a,b) — (2,3, d", V)
is an equivalence between the associated submanifolds of solutions Mgy — /\/l'( £r):

Conversely, let M and M’ be two submanifolds of K} x K x KP x Kj* and of
K% x K7} x K7, x Kj} represented by y = I1(z,a,b) and by y' = II'(2’, ', '), in the
same dimensions. Assume both are solvable with respect to the parameters.

Lemma 7.5. Every equivalence

(7.6) (x,y,a,b) —> ((p(x, v), h(a, b))

between M and M’ belonging to G, , induces by projection the equivalence (z,y) +—
¢(z,y) between the associated PDE systems (Exq) and (E)y).

7.7. Classification problems. Consequently, classifying PDE systems under point trans-
formations (Section 3) is equivalent to the following.

Equivalence problem 7.8. Find an algorithm to decide whether two given submanifolds
(of solutions) M and M’ are equivalent through an element of G, ,.

Classification problem 7.9. Classify submanifolds (of solutions) M, namely pro-
vide a complete list of all possible such equations, including their automorphism group

Aut, ,(M) C G .

7.10. Partial normal forms. Both problems above are of high complexity. At least as
a preliminary step, it is useful to try to simplify somehow the defining equations of M,
by appropriate changes of coordinates belonging to G, ,. To begin with, the next lemma
holds for M defined by y = II(x, a, b) with the only assumption that b — I1(0, 0, b) has
rank m at b = 0.

Lemma 7.11. ([CM1974, BER1999, Me2005a], [*]) In coordinates ' = (x’l, cee
andy = (y'',....y"™) an arbitrary submanifold M' defined by v/ = 1I'(z',d’, ¥
dually by b = 11" (d’, 2', ') is equivalent to

(7.12) y =1I(z,a,b) orduallyto b=1II"(a,z,v)

o

=~

™)
)

with
(7.13)  11(0,a,b) = (x,0,b) =b  ordually II"(0,z,y) = 11*(a,0,y) =y,
namely 11 = b + O(za) and 1T* = y 4+ O(ax).
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Proof. We develope

(7.14) y =1I'0,d",0") + A'(2") + O(2'd’).

Since O — IT'(0, a’, ') has rank m at b’ = 0, the coordinate change

(7.15) v =11'(0,a',0), d":=d, 2":=2", o =4,

transforms M’ to M” defined by

(7.16) y' =10 (2", a", ") ="+ N (2") + O(a"a").

Solving b” by means of the implicit function theorem, we get

(7.17) V' =11""(a", 2", y") =y — N (2") + O(a"2"),

and it suffices to sety := ¢ — A'(2"), z ;== 2" and a := a”, b := V. O

Taking account of solvability with respect to the parameters, finer normalizations holds.

Lemma 7.18. Withn = m = r = 1, every submanifold of solutions y' = b/ +2'a’ [1+ 01
of Yo = F'(2', Y, y.,) is equivalent to

(7.19) Yor = b+ xa + O(z%a?).

Proof. Writing y' = b + 2'[d’ + @/ '(d/, V') + O(2'd’)], where A’ = O4, we set a” :=
a+ad N V)b :=V,2" =2,y =y, whencey” = b"+2" [a”—i—O(x”a”)}. Dually
b// — y// _ a// I:I,// + I//(L’H ‘/\//('ZJ/7 y//) + O(x//x//a//)}’ SO wWe Set €T = x// + x//x// A//(x//7 y//)’
y:=vy",a:=ad",b:="b". O

Corollary 7.20. Every second order ordinary differential equation y.,,, = F'(z',y',y.,)
is equivalent to

7.22. Complete normal forms. The Moser theory of normal forms may be transferred
with minor modifications to submanifolds of solutions associated to (£;) and to (&,).

Theorem 7.23. ([CM1974, Ja1990], [*]) A local K-analytic submanifold of solutions
associated to (&€,):

(7.24) Yy =0+2d+0;3= Z Z I, »(0) 2 a
K0 I'>0

can be mapped, by a transformation (z',y',a’, V') — (z,y,a,b) belonging to G, ,, to a
submanifold of solutions of the specific form

(7.25) y = b+ za+ Iy 4(b) v*a* + Ty 5(b) a’z* + Z Z Z I, (b) 2*a’.
k2 122 k=7
Solving (a,b) from y = II and y,, = II, with II as above, we deduce the following.
Corollary 7.26. Every y.,.. = F'(2',y,y.,) is equivalent to
Yoo = (=) [2° Fao(y) + 2*r(z,y)] + (vo)* [Fouy) + zr(z, y)]+

(7.27) +3 D3> Fal)a* ()

k>0 130 k+I>5

For the completely integrable system (&) having several dependent variables

(z',...,2"), n > 2, we have the following.
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Theorem 7.28. ([CM1974], [x]) A local K-analytic submanifold of solutions associated
to (&):

(7.29) y=v+ Y 2"d"+0;
1<k<n

can be mapped, by a transformation (2',y',d’,b') — (z,y,a,b) belonging to G, ,, to a
submanifold of solutions of the specific form:

(7.30) y=>b+ > " +) Y My(z,a,b)
1<k<n k=2 122

where

(7.31)
Mg, a,0) = 3 Yo Wiontitn (0) (&) (@) (@) (@)

k14 tkn=k li+-+lpn=l

with the terms Il 9, 115 3 and 113 3 satisfying:

(7.32) 0=Ally =AATIly 3 = AAIl3 5 = AAATIs 3,
where
92
7.33 A = _—
(7.33) > Foroa
1<k<n
Exercise: solving (a*,b) from y = II and y,, = I, with II as above, deduce a

complete normal form for (&,).

Open problem 7.34. Find complete normal forms for submanifolds of solutions associ-
ated to (£,) and to (Es).

§8. STUDY OF TWO SPECIFIC EXAMPLES

8.1. Study of the Lie symmetries of (£,). Its submanifold of solutions possesses two
equations:

(8.2) y' = (z,a,b", b%) y? = 11%(x,a,b', b?).

For instance, a generic submanifold A/ C C? of CR dimension 1 and of codimension 3
has equations of such a form.

Assuming Vs(&,) to be twin solvable and having covering submanifold of solutions
(see Definition 10.17), it may be verified (for M C C3, see [Be1997]) that at a Zariski-
generic point, its equations are of the form:

y' = b+ za+ O(x?) + O(b') + O(b?),

y? = b0+ za(x + a) + O(2®) + O(b') + O(b?).
The model has zero remainders with associated system

(8.4) i =2y + ()% Y =0,

the third equation y2 = 23| being obtained by differentiating the first.
We may put the submanifold in partial normal form. Proceeding as in [BES2005], some
partial normalizations belonging to G, , yield:

yt = b+ ax + d® [Hég(b) 2® + 1 ,(b)z* + -] + O(a® 2°),
V=0 +afg® + T, (b)a" + -] +a® [z +T5,(b)2° +--- ] + O(a® 2?).

(8.3)

(8.5)
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Redifferentiating, we get an appropriate, partially normalized system (&):
(8.0)

vi=y 2z +g") + W)’ (14" + w)’s+ w)'s+ (y1)°s+ (y)°R,
ys = (y1)’h+ (y1)°R,
vy =y (2+8L) + (W) (g2 + 2z +g")h) + (Y1)’ r+ (y1) r+ (1)’ r + (¥1)°R,

where, precisely:
e g', g? and h are functions of (z,y', y?) satisfying g/ = O(zz) + O(y') + O(y?),
j=1,2andh = O(z) + O(y") + O(y?);

e r and s are unspecified functions, varying in the context, of (z,y',y?) with s =
O(z) + O(y*) + O(y?), but possibly r(0) # 0;

e Ris a remainder function of all the variables (z, 4!, y?, yi) parametrizing Ag,.

Letting £L = X 8‘1 + Yt 8‘31 +)? 82 be a candidate inﬁnitesimal Lie symmetry and
applying L3 = £+ Y1 BT + Y1 o7 + Y2 Byl + Y 2 to Ag,, we obtain firstly,
computing mod (y1)°:

0= Y7+ [X](1(2+g,) + ()8 + ()’ r + ()" 1)+
+ Ve )+ ()’ r+ () ')+
[ }(3/1“" y)’r+ ()’ (y%4r)+

+Y (20 +g" +ur(2+28%) + (1)’ s+ (1)’ s + (1)*'s),

(8.7)

and secondly, computing mod (1 )?:
(8.8) 0=-Ys+2yi Yih.

The third Lie equation involving Y3 will be superfluous. Specializing (4.6)(II) to m = 2,
we get Y} and Y?:

Y1 =Y, + [V — Xy + Y]y

2
+
(8.9) ;
Y=Y+ Valuyi+ (Ve — X+ [~ Xp] il + [ — X2 (1)

and also Y3 and Y? (in fact superfluous):
(8.10)

Yy =V + 2V — K] yi + [2V8:] 4F 4 [V — 2X00] (w1)*+
+ 2V = 22| iyl + [Vipye] W) + [ = X ] (1) +
+ [ = 2&2] ()07 + [ = Xge] w1 (01)° + [V — 2] o+
+ (Ve vi + [—3?6 Jyt s + [—X 2] Y1 Y3 + [—2%2} Yt Yo,
=Yoo + [2V0p] 01 + [2 yﬁy Kool Y7 + [){5 e 2+
+ [2 yy21y2 - 2Xxy1] yl 3/1 [y§2y2 - ] (yf) [ ] (1/1) yf—i—
+ [_ 2 Xyly?] y% (?J%)z + [_ XyzyQ] (?J1 [ 51] y
+ Ve 22X s+ [ 28y s+ [~ Xp] vl + [ - 3] vl us.
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Inserting Y? and Y1 in the first Lie equation (8.7) in which y? is replaced by the value
(8.6), it has on Ag, and still computing mod (y1 )5, we get, again with r, s being unspeci-
fied functions of (z,y', y?) with s(0) = 0:
(8.11)
0=—Y7+[-Vplui+
+[ =V + ] (12 +8") + () (L +8%) + ()*s + (1) 's)+
Xl (1)?*2r+g") + ()’ (1+8) + (y)''s)+
2] ((y1)°[22 + &' + (1)° (4o +28") (1 + &%) + () (1 +5)) +
(y1(2+g2) + (n1)° g + (1) r + (1) " 1)+
i+ () e+ () r+ ()" n)+
it )+ ) e+ (o) ')+
20 +g' +y1(2+287) + (y1)*s + (1)’ s+ (y1)"s) +
—X] (122 +g") + (1) (2 + 28%) + (1)’ s + (1) s) +
(w127 + &' + (1n)*(22 + 8")(3+38%) + (11)* (2 +5) + (11)"s) +
o] () Qe +g') + (1) (2 +28%) + (n)'s)+
2] (D222 + g + (y)3 (22 + g (3 +3g%) + (y])* (2 +59)).

_l_
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Collecting the coefficients of the monomials cst., yi, (y1)?, (y1)3, (yi)%, we get, after
slight simplification (in the coefficient of (y{)?, the term (2x + g')X,, annihilates with its
opposite; in the coefficient of (y;)?, two pairs annihilate and then, we divide by [1 + g?])
a system of five linear PDE’s:

0=V + 2z +g")V,,

0=-Vu—(u+g")\Vo+2+g)X +rYV +rY+
+ 2428V + 2z + ")V + 22 + 8"V,

0=-YVhr+ X, + g1+ "X +rY +r)°+
+sVy +2V5 —2X, + (62 + 3g°) Ve,

0=sVh+sX + (1+g)X,: + 2z +g")(2 + 28°) X2+
Fr X+ Y Y 45V sV +sX +(245) Vp—
—(2+2g") X — (20 +g")(3+ 38%) Az,

0= sng +sX +sXi+ (1+8)Xz +rX +rY +rY° +s)) +syy11+
+sX, ~|—syy12 +sXp — (24 5)Xpe.

(8.12)

We then simplify the remainders using s +s = s, r+s = rand r + r = r; we divide
(8.12); by (1 +s); we replace X2 obtained from (8.12); in (8.12),; we divide (8.12), by
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(1 + g?); we then solve X,» from (8.12), and finally we insert it in (8.12);; we get:
0=-Y+ (22 +g" Y.,
0=—Vu—Q2ue+g" Vo +2+g)X +(2+28°)V, + 2z +g") Vi +
+ [22 + g1]2y;2 +r Y )2
(813) 0=—YV5— X, +2V + (62 +3g") Ve +r V' +rV? +s5V,+
+gi[l+g° 7',
0=—-X,+(2+ s)y;2 FrX eV )P 4 s X s YL +sy;1 + sng,
0= —Xp+rX+rV' +rV? +sX, +sV, +sV +5V,2 +5Ve.
Similarly, developing the second equation (8.8) and computing mod (y;)?, we get:
0= YL+ [ =2V + ]yl + [ — (4o +28") V02 — (2+ D) VL] +
+[2h ;] 1.

Collecting the coefficients of the monomials cst., ¥, we get two more linear PDE’s:

(8.14)

Wl
Tz

0=—=2V01 + Xoo — (42 +28")V,2 — (2+h)YV)> +2h ).
Proposition 8.16. Setting as initial conditions the five specific differential coefficients

(8.17) P=PX, YV 0LV 2)=r X +r Y +r)? +r YVl +r X,

x)

(8.15)

it follows by cross differentiations and by linear substitutions from the seven equations
(8.13);, © = 1,2,3,4,5, (8.15);, j = 1,2, that X, Xp, y;l, yyg,, 2 yy%, 2, and

Y

Xpzr Xy, X2, ;x y;yl, y;yg are uniquely determined as linear combinations of
(X, Y52, V1 X,), namely:
V2EIp, x,ZpP, Y.LZP
(8.18) Xp =P, YLEZP, VAEP, X, ZP, YL EP
Xy2 = P, y;2 = ) y52 = ) Xxy2 = P, y;y2 e P.

Then the expressions P are stable under differentiation:
P.=P+rY:+rY,, +rX, =P,
(8.19) Py =P+rXp+rVh+rVh 41V +r X, =P,
Ppe=P+rXp+ ry;2 + rng + ry;yg +r&,,. =P,
and moreover, all other, higher order partial derivatives of X, of Y! and of )’ may be

expressed as P (X, V', V2, VI, X,).

Corollary 8.20. An infinitesimal Lie symmetry of (£,) is uniquely determined by the five
initial Taylor coefficients

(8.21) X(0), Y'(0), Y*(0), ¥,(0), X,(0).

Proof of the proposition. We notice that (8.18), and (8.18), are given for free by (8.13),
and by (8.15),. Differentiating (8.13); with respect to z, we get:

0=y — Xoo + 2V, 0 + (6 +3g,) Ve + (62 +3g")V,,2 +r V' +

8.22
(8:22) e VP YR eV sV r X gl 4+ g A
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By (8.15),, sV} vanishes. We replace J? thanks to (8.13),. Differentiating (8.13), with
respect to y*, we may substract 0 = —V,,2 + (22 +g")V, > +rY,. We get:

_ 1 1 1
0=~ +2V,0 + (42 +287)V,,0+

(8.23)
+(643gH)Vh +rX +r Y Y+ r Y+ g2l + gl

By means of (8.15),, we replace the first three terms and then solve yg;:

(8.24) Vpp=rX+r Y +rY?+rY, +k* X,
introducing a notation for a new function that should be recorded:
(8.25) k*:=g?[l +g? '[4+3g. —h]".

This is (8.18),,. Next, we differentiate the obtained equation with respect to =, getting:
(8.26) Vi =t X +r YV 41V 41, +r X, + K X,
This is (8.18),5. We replace the obtained value of yyg in (8.13),, (8.13)3, (8.15), and the
obtained value of y;yZ in (8.15),. This yields a new, simpler system of seven equations:
0=-V;+ 2z +g")Y,,
0=-V1—Q2z+g" Vo +2+g)X +(2+28")Vi + 2z +g" )V +
+sX +r Y +r)? + sV + K22 + g2 A,
0=—Vob =X, +2YV; +sX +r Y +r)* +sY, + k' (62 + 3g") A,
0=—Xp +rX+r V' 41’ +sY, +sX +sV, +5Vo,
0=—Xp+rX+rYV' +r)’+sV, +sX +sV, +5Va,
0=—Y,
0=—-2V1 + X (L =K (42 +28")) +r X +r V' +rY* + 1V, +5X,.
Restarting from this system, we differentiate (8.27); with respect to x:
0=—2p2 = Xow +2Vpn +r X +r YV + 1)+
+rX, Y+ r Y24 s YL+ k(62 + 3gh) X

(8.27)

(8.28)

We replace )2, we erase V! and we add (8.27):
(8.29) 0=—V2p + K22 +8)Xoe +rX +r V' +rI* +rY, +r X,
We differentiate (8.27), with respect to z:

0=—22, —(2+gh)V% — 20 +g)V2e +rX + (2 +gh) X+
(8.30) +sV 4+ (2+28°)V,, + 2+g)Vp + 2z + gV +r Xt

+sX, +r Y Y+ Y+ V4 Y+ s YL+ K20 + g X

Differentiating (8.27), with respect to y', we may substract 0 = —)2 , + (22 +g") Y, . +
r V1; we replace V? and erase ). ; we substract (8.29) multiplied by (2x + g'); we get:
(8.31) 0=-Ve+ 1 +8)X +Vp +rX +rV +rY* +rY,.
Comparing with (8.27); yields:
Vi=2+9)X +rX+rY +r)*+r)),

8.32
(8:32) =B +s) X+ r X +r Y +r Y+
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These are (8.18)5 and (8.18),,. Differentiating these two equations with respect to =z,
replacing ))? and erasing ). , we get:

Vo = 2+8) X +r X +r YV +1 ) +r YV +r A,

(8.33) 2 1 2 1
Vi = B+s) X +rX+r Y +r Y +rY, +rX,.

We then replace this value of y§y2 in (8.29) and solve X, : this yields (8.18),.

To conclude, we replace X, so obtained in (8.27),: this yields (8.18)5. We replace yyh
and yy% from (8.32) in (8.27), and in (8.27)5: this yields (8.18), and this yields (8.18),.
Thanks to (8.18), (got) we observe that

(8.34) Po=P+rY +r)?+rX,=P.

Differentiating (8.18), (got) and (8.18)4 (got) with respect to x then yields (8.18), and
(8.18);5. We replace yy11 and ng from (8.18); (got) and (8.18);; (got) in (8.27),: this
yields (8.18),. Finally, to obtain the very last (8.18),5, we differentiate (8.18),, (got) with
respect to x.

The proof of Proposition 8.16 is complete. 0

We claim that the bound dim GYM(E,) < 5 is attained for the model (8.4). Indeed,
with0 =r =sand 0 = g' = g? = h (whence k* = 0) (8.24) is yyg = 0 and then the
seven equations (8.27) are:

(0=-Y?+2z2).,
0=—V2—20YVr+2X+2Y, +22),,
0 — —yy22 - Xx + 237;1,

(8.35) 0=—X,,
0=—X,,
0=-Y!

xT)

\ 0= _2y;y1 + sz7
having the general solution
X=a—d+ex,
(8.36) YV =b+dz+2eyt,
V*=c+2ay' + 3ey® + dax.

depending on five parameters a, b, ¢, d, e € K. Five generators of GYM(E,) are:

(D =20, +2y' O +3y° Dpe,
Ly = =0, +x0,p + 22 0,p,

(8.37) L) =0, +2y" 0,
,CQ = 8y1,
. £3 = 8y2.

The commutator table
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|D £ [£ [£ |£Ls

D0 —Ly | =L | —2Ly | —3L3

£1 £1 0 —[,2 0 0

oLy L2 |0 —2L510

Lo]|2L5 (0 2L5 |0 0

L3]3L3]0 0 0 0
Table 3.

shows that the subalgebra spanned by L, £, L2, L3 is isomorphic to the unique irre-
ducible 4-dimensional nilpotent Lie algebra n} ((OV1994, BES2005]). Then GYM(E,)
is a semidirect product of K with n}. The author ignores whether it is rigid. The following
accessible research will be pursued in a subsequent publication.

Open problem 8.38. Classify systems (E4) up to point transformations. Deduce a com-
plete classification, up to local biholomorphisms, of all real analytic generic submanifolds
of codimension 2 in C3, valid at a Zariski-generic point.

8.39. Almost everywhere rigid hypersurfaces. When studying and classifying differen-
tial objects, it is essentially no restriction to assume their Lie symmetry groups to be of
dimension > 1, the study of objects having no infinitesimal symmetries being an inde-
pendent field of research. In particular, if A/ C C"*! (n > 1) is a connected real analytic
hypersurface, we may suppose that dim hol(M) > 1, at least. So let £ be a nonzero
holomorphic vector field with £ + £ tangent to M.

Lemma 8.40. ([Cal932a, St1996, BER1999)) If in addition M is finitely nondegenerate,
then

(8.41) S:={peM: Lp) e T;M}

is a proper real analytic subset of M.

In other words, at every point p belonging to the Zariski-dense subset M\, the real

nonzero vector £(p) + L(p) € T,M supplements T;M. Straightening £ in a neigh-
borhood of p, there exist local coordinates t = (z1,.. ., 2,, w) with T§M = {w = 0},
ToM = {Imw = 0}, whence M is given by Imw = h(z, 2z, Rew), and with £ = 2.
The tangency of % + % = % to M entails that h is indendepent of u. Then the complex
equation of M is of the precise form

(8.42) w=w+i0(z,%),

with © = 2h simply. The reality of h reads O(z, 2) = O(Z, 2).

Definition 8.43. A real analytic hypersurface M C C"! is called rigid at one of its points
p if there exists £ € hol(M) with

(8.44) T,M =T:M ®R(L(p) + L(p)).
Similar elementary facts hold for general submanifolds of solutions.

Lemma 845. With n > 1 and m = 1, let M be a (connected) submanifold of
solutions that is solvable with respect to the parameters. If there exists a nonzero
L+ L € GYPM(M), then at Zariski-generic points p € M, we have L(p) € F,(p)

and there exist local coordinates centered at p in which £ = a%’ L= %, whence M has
equation of the form
(8.46) y=b+1l(z,a),

with 11 independent of b.
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The associated system (£,,) has then equations F, that are all independent of y.

8.47. Study of the Lie symmetries of (£5). In Example 1.28, it is thus essentially no
restriction to assume the hypersurface M C C? to be rigid.

Theorem 8.48. ([GM2003b, FK2005a, FK2005b]) The model hypersurface M, of equa-
tion
9,151 1,152 | 1512
(8.49) W=+ 'z —I—zzz_—l—zzz
1 — 2272

has transitive Lie symmetry algebra hol(My) isomorphic to so(3,2) and is locally biholo-
morphic to a neighborhood of every geometrically smooth point of the tube

(8.50) (Rew')? = (Rez})* + (Re 2})?

over the standard cone of R3. Both are Levi-degenerate with Levi form of rank I at every
point and are 2-nondegenerate. The associated PDE system (Epy,)
1 2

(851) Y2 = Z (yacl) 5 Yziglagl = 0

(plus other equations obtained by cross differentiation) has infinitesimal Lie symmetry
algebra isomorphic to so(5, C), the complexification s0(3,2) ® C.

Through tentative issues ([Eb2006, GM2006]), it has been suspected that M, is the
right model in the category of real analytic hypersurfaces M/ C C? having Levi form
of rank 1 that are 2-nondegenerate everywhere. Based on the rigidity of the simple Lie
algebra s0(5, C) (Theorem 5.15), Theorem 8.105 below will confirm this expectation.

8.52. Preparation. Thus, translating the considerations to the PDE language, with n = 2
and m = 1, consider a submanifold of solutions of the form
y=b+Ti(z,a)
(8.53) 2ztat + x'zta® + atata?
=b + + 047

1 — 22a2

where Oy is a function of (x, a) only. The term 2 x'a' corresponds to a Levi form of rank
> 1 at every point. The term z'z'a? guarantees solvability with respect to the parameters
(compare Definition 2.12). Let us develope

(854) H($> CL) = Z Z Hkl,kzllh (xl)kl <x2)k2 (CLl)ll <a2)12’

k1,k220 11,1220

with Hkl,kQ,h,lz € K. Of course, HLO,LO =2, HQ’(]’O’l =1land H071’2’0 =1.

Lemma 8.55. A transformation belonging to G, , insures

Hk‘l,kz,o,o = 07 kl + kQ 2 07 HO,O,h,lQ =Y, ll + l2 2 Oa
(856) Hk,‘l,kg,l,() = 07 kl + k? 2 27 Hl,O,ll,lz = 07 ll + l2 2 27
Iy, kp20 =0, ky + ke > 2, I200,0, =0, L+l >2

Proof. Lemma 7.11 achieves the first line. The monomial z! being factored by [a' +
Oz(a)], we set a' := a' + Os(a) to achieve Ty g, 4, = 0, 11 + I > 2. As in the proof
of Lemma 7.18, we pass to the dual equation b = y — II(z, a) to complete IIj, x,10 =0,
k1 + ko > 2. Finally, z' 2! is factored by [a® + Oy(a)], so we proceed similarly to achieve
the third line. 0
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Since I1(x, a) is assumed to be independent of b, the assumption that the Levi form of
M C C3 has exactly rank 1 at every point translates to:

(8.57) 0

Hxlal Hxla2
HxQG,l H$2a2

For later use, it is convenient to develope somehow II with respect to the powers of
1 .2
(a',a®):

2x'a + 2tata® + atata?
1 — 22a?
+a’b(z) + a'a®d(z) + a’a’* e(x) + a'a'a £(z) + a'a'a® g(z)+

+ (a")*R+ (a")*a* R+ a'(a®)?R + (a?)®R,

y=>b+
(8.58)

with R = R(x,a) being an unspecified remainder. Thanks to the previous lemma, the
coefficients a of a' and c of a'a! must vanish. The function b is an Os.

Lemma 8.59. The function b depends only on x', is an O3(x') and the function g satisfies
1242 (O) = 0.

Proof. Developing [1 — z%a?]™! = 1 + 2%a® + (2%a®)? + O3(2%a?), inserting the right
hand side of
y—b=d'[2z"] + a*[z'z! + b(z)] + a'a' [2°] + a'a®[22'2” + d(z)]+
(8.60) +a’a’[z'z'2® + e(x)] + d'a'd [f(2)] + a'a'a® [#72® + g(z) ]+
+ (@")'R+ (a')?a® R+ a'(a®)* R+ (a®)*R

in the determinant (8.57) and selecting the coefficients of cst., of a!, of a® and of a'al,
we get four PDEs:

0 =2b,e,
0=2d,2 —2b,1,

0=4e, —22'd,2 — 22 by —d,2 by,
0=2g, —2d, — [62' +3b,] fe.

(8.61)

The first one yields b = b(x'), which must be an O3(x'), because the whole remainder
is an Oy. Differentiating the fourth with respect to z?, it then follows that g,2,2(0) = 0.

8.62. Associated PDE system (&5). Next, differentiating (8.60) with respect to z', to

z'z! and to #'x'z!, we compute y,1 and y,1,1, we substitute y; and y; ; and we push the

monomials a?a?, a'a'a' and a'a'a? in the remainder:

(8.63)
Y1 = 2a* + a®[22' + by + a'a®[22% + d ] + (@2 R+ (a')) R+ (a')? a®R,

Y11 = a’[2 + byia] + a'a?[dy,] + (0®)* R+ (a')* R+ (a')? a®R,
Y1,1,1 = CZQ[bxlxlxl] + a1a2 [dxlxlxl] + (a2)2 R+ (@1)3 R+ (a1)2a2 R.

Here, the written remainder cannot incorporate a‘al, so it is said that the coefficient
of a'a' does vanish in each equation above. Solving for a' and a? from the first two
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equations, we get

(8.64)
ol — 1 221 + b, 222 4+ d,
2 Y1= 1 442b,1,1 yiy1a 8+4b,1,1
+(y1)* R+ (1)’ R+ (1) w11 R,
1 d, i1
2 zlz 2 3 2
- - |- —rr R R R.
a Y1,1 |:2+bx1x1:| Y1Y1,1 |:2(2+bxlml)2:| + (y1,1)° R+ (11)° R+ (y1)“y11
We then get (notice the change of remainder):
(8.65)
1 27! + by 222 + d
1.1 2 T T 3 2
ata’ = (y1)” — 1y {4+2bx111] (y1)“y1,1 |:8+4bx1x1:| + W)’ R+ (y11)° R,

1 d 1,1

1 2 2 Tt T 3 2
aa” =yYiyi1 |:4+2ba:1x1:| (y1)“y11 [(4+2bx1x1)2] +(y1)° R+ (y1,1)° R,
a’a®> = (y1)* R+ (y1.1)°R,

6z' +3b,1
16 + 8 b, 1,1

1 3 2
belxl] + (y1)° R+ (y11)° R

a'a'a' = —(11)*y1. [ ] (1)’ R+ (11.1)°R,

a‘a'a’® = (91)2 Y1,1 [

Differentiating (8.60) with respect to z2, substituting v, for v, and replacing d,2 by b,
thanks to (8.61),, we get
(8.66)
ys = atat + ata®2z! + b1 + d?d®[zlxt + e2] + alalal[f,2] + atata® (222 4 g2 ]+
+ (@H*R+ (a')?a® R+ a'(a®)?’ R + (¢®)®R.

Replacing the monomials (8.65), we finally obtain:
(8.67)
1 2g.2 —2d,1 — (6$1 + 3 bx1>fo (Qxl + bzl) d i,

_ 2 2 _
y2 =7 )"+ (W) yia 161 8b.s (1 2boa)?

+ (11)* R+ (y1.1)*R.

Thanks to (8.61),, the first (big) coefficient of (y1)2y171 is zero; then the remainder coef-
ficient is an O(x!), hence vanishes at x = 0, together with its partial first derivative with
respect to z2. Accordingly, by s* = s*(z!, 2?), we will denote an unspecified function
satisfying

(8.68) s'(0)=0 and s52(0)=0]|

2

Lemma 8.69. The skeleton of the PDE system (E5) associated to the submanifold (8.58)
possesses three main equations of the form

( Yo = ! (y1)” + ()’ r+ (y)* r+ (v1)° r + (1) R+

4
oy [()?s" 4+ () r+ (w) r+ ()’ r] + (111)* R,
1
(M) 2 = 5 yya+ )"+ (1) r+ (1) r+ ()" R+

+yia[(y)?r+ )’ r+ () r+ (1)’ r] + (1)° R,
Y111 = (y1)*r+ (y1)*r+ Y1,1 [f +yrr+ ()’ + (n)? r] +
L + (yr)?[r+yr+ (W)’ r+ ()’ r] + (111)° R,
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where the letter r denotes an unspecified function of (x', x?), and where the coefficient s*
of (y1)?yy1.1 in the first equation satisfies (8.68).

Proof. To get the second equation, we compute:

Y10 = a'a®[2 + byig] + a'ata®[g,2] + (a')* R+ (a®)*R

(8.70) 1

=5 Yiyia + (y1)2y1,1 r+ (y1)3 R+ (y1,1)2 R.
The third equation is got similarly from (8.63);. To conclude, we develope the first two
equations mod [(y1)®, (y1,1)?] and the third one mod [(y1)*, (y1,1)*]. O

This precise skeleton will be referred to as A, in the sequel. With the letter r, the
computation rules are cst.r = r +r = r +s* = r - r = r; sometimes, s* may be replaced
plainly by r.

8.71. Infinitesimal Lie symmetries of (&5). Letting £ = X' ;2% + X2 .5, + Y 2 8 be a
candidate infinitesimal Lie symmetry and applymg

0 0 0 )
£(3) — Xl _ XQ v Y v, 2
ot a2+y g, T, T
0 0 0 0
Y Y Y %
(8.72) + Y1 9yin + Y2 EI + Yoy . + Yoo 8y272+
0 3,
Y e+ Y
+ Y111 Dyrra +-+ Yoo Tras
to the skeleton Ag,, we obtain firstly, computing mod [(y1)5, y 171] .
1
0=-Yy+ §y1Y1+
(8.73) + () r X+ () ré’fl (yl) A2 ()t X2
+Y, [(%)2 r+ (y1)° )4 r} +
+Yq, [(y1)2 s+ (yl) r+ (y1)4 r},
secondly, computing mod [(y1)®, y1,1]:
1
0=-Yi2+ S0 Y+
(8.74) + ()P r X+ () e X+ () r X () r A%

+ Y1 (1) r+ ()P r+ () ]+
+ Y1 () r 4 (1)’ r + ()],
and thirdly, computing mod [(y1)?, (y1.1)?]:
= Y11+ 1 Xy X+
F oy Xy X2y (1)* Xy (n)® X2+
+ Y [()r] + Yoa[r+yr+ )] oy Ya[r+yr+ (n)r]+
+y11 Y11 [r +yir+ (y1)? r} .

Specializing to n = 2 the formulas (3.9)(II), (3.20)(II) and (3.24)(II), we get Y, Yo,
Y1,1, Y1,2 and Y1,1,13

(876) Y1 =Yu+ [Vy—Xh]yi+ [—X2] e+ [ X )+ [— X)) vize.

BT Yo=Y+ [-Xp|y+ [V, - X2+ [ =X e + [ — X7 ] y21e.

(8.75)
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(8.78)
Yl,l = yxlwl + [2 yxly — Xa}lxl} U+ [— X:z?lxl} Y2 + D)yy — 2Xxlly:| (y1)2+

+ =22 e+ [ = XL () + [ — A2] (n1)*wet
+ [V —2&xh i+ [ 28] yio+ [ - 32 vyt
+ [ - Xy2:| Y2Y1.1 + [ - 2)(3} Y1Y1,2-

( Yio= Vg2 + [y:p2y - Xglxﬂ Y1+ D)rly - Xx21x2] Yot
+ [ =X, )+ [Vyy — X2y, — X, | vaye + [ — X2, oyt
(8.79) + [ =20 )Py + [ = X0 i (y2)*+
[— X2y + [V — X — X yio+ [ — 3] yoot
[ - 2?@1] iy + [ — 2?(;} YaY1,2-

(Yiin=Yatotor + [3Voaty = X ] 41 + [ = g |1+
+ [3 yrvlyy -3 Xa}lxly} (%)2 + [ -3 lexly} Y1Y2+
+ [Viwy — 3%, (0)° + [ =37, ] (11)*9+

= Xy )"+ [ = A, ] (1) e+

G50 3Vyy —9 Xl}ly} Y1y, + [ -3 X;?ly} Y2Y1,1+

— 6%, | yiyio+ [ 64,] (1) yia + [ = 3%, ] yigoyn i+

- 3‘)(@/231] (11)" y12 + [ -3 Xgﬂ (y11)* + [ -3 X;] Yi,1Y1,2+

Yy — 3X;v11] Y11+ [— 3X§1} Y12 + [— 4)(3,1] Nyt

- XyQ] YoY1,11 + [— 3Xy2} Y1Y1,1,2-

Inserting Y5, Y19, Y111, Y1, Y1, in the three Lie equations (8.73), (8.74), (8.75),
replacing ¥, Y12, ¥1,1,1 by the values they have on Ag,, we get firstly five linear PDEs by
picking the coefficients of cst., of y1, of (y1)2, of (y1)3, of (y1)* in (8.73):

(0=D,2,
0= X+ %yxl,
0=V, + X% —2X} + Y +5 Vo,
(8.81) ¢ o= 22X + XA+ X +r X+ YV +r Y, +r X+
+r Vg + 5 Vpry + 5" X,
0= X; +r X+ r X2 Y Y, XL+ r XA+ er1+
\ +r Vgt + 1ty +r X0 + 5 Xa0 +5 Yy, +5 XN

xzly
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secondly, we get three more linear PDEs by picking the coefficients of ()2, of (y1)3, of
(y1)* in (8.74):

(0=3Yu, + X +4X05, —2X5 0 +r X+ r X%+ r Vo 41V,
0=2Vyy +2X5, — 60, — X2, +r X +r X241V +rY, +r X+
(8.82) + 1t Varar + 1 Yoy +r X,
0=4X,, +3X0, +rX' +rX° +rVu +rY, +r X, +r X0 +r X, +
+ t Vargr +t Vpry + 1 X + 1 X+ 1Yy +r X,

and thirdly, we get five more linear PDEs by picking the coefficients of cst., of y;, of y; 1,

Of y1y1,1, Of (y1>2y171 il’l (875)
(8.83)
(0= V10 + ryxlx1,

0 = _Syxlmly + Xll 1.1 + ryrlzl + ryxly + rXx11x1,

0=Vpy —Xhp +r X +r X2+ 1V +r Y, +r X + 1V
3
0=—3 et 3y — 9, +r X+ X v X+ Y +r Y+

F XD AT X A1 Vg + 1 Yoy + r X,

15
0:6Xy1y+ZX§1y+er+rX2+rX§1 Fr Vo Fr Yy +r X+ X +r X4+

\ +r Ve + ryxly + r-)(;1}1:31 + FX§1$1 + I'yyy + I’lely.

Proposition 8.84. Setting as initial conditions the ten specific differential coefficients
(8.85)
Pi=P(XL X%V, X X5, Vo1, Yy, Xoro, Varar, Vyy)

=X X YA X XL At Vo Yy 0 X+t Vg + 1Yy,

it follows by cross differentiations and by linear substitutions from the Lie equations
(8.81);, i = 1,2,3,4,5, (8.82);, 7 = 1,2,3, (8.83);, 1+ = 1,2,3,4,5, that X, x2

1

1 2 1 2 1 2 1 2 2
ny; XIQy Xy; Xxly» XIQCEQ’ yxlxzy Xny; szy, yxly: ny; nyy: Xx1x1x2y yxlxlxly Xxle‘rQ
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2 . . . .
Voigiz2, Xxlxgy, Varatys Vatyys Va2yy Vyyy are uniquely determined as linear combina-

tions of (X1, X%V, X}, X%, Vo1, Yy, X211, Varar, Vyy), namely:

( lel é , ‘)Cfl % P, ny g PJ
XL 2P, X2 P,

Xély g P, XxQQlQ ; P; yxle i P7
X:plzy 2 P, X222y = P, yxly = P7
Xl 2p, Vary = P,
(8.86) szlmle = P, Vitgig = P,
X;xzxz 2 P, yzlxlx2 1:7 P,
Xagley g P, yxlxly 2 Pa
yxlyy 2 P7
yx2yy 2:1 P7
L Vyyy =P

Then the expressions P are stable under differentiation with respect to !, to 22, to
y and moreover, all other, higher order partial derivatives of X 1 of X2, of Y may be
expressed as P (X!, X2 ), Xy, X%, Vo, Yy X2, Vot Vy)-

Corollary 8.87. Every infinitesimal Lie symmetry of the PDE system (E5) is uniquely de-
termined by the ten initial Taylor coefficients

(8.88) Xl(o)v XQ(O)a y(O), Xyl(o)v ng (0)7 yzl (0)7 yy<0>7 Xa?le (0)7 yxlml (0)7 yyy<0)'

Proof of the proposition. At first, (8.83), yields (8.86),5; (8.81); yields (8.86)5; differen-
tiating (8.81); with respect to z! yields (8.86)g; differentiating (8.81), with respect to y
yields (8.86),5; differentiating (8.81); with respect to z'z! yields (8.86),,; and differenti-
ating (8.81); with respect to yy yields (8.86),,. Also, rewriting (8.81), as

1
(8.89) Xpp = =5V,
we get (8.86),; and rewriting (8.81), as
1 1
(8.90) Xl = 3 2+ 5 Yy TV + $* Vatat,

we get (8.86);.

Next, differentiating (8.81), with respect to z* and (8.81); with respect to 2?2, we get,
taking account of 0 = V,2, = V1,2 = Vyrp1,2, replacing Xpi,2 by —3 V1,0 and solving
for X2,

272"
1 1
O - Xmle + 5 yx11’17
Xﬁsz = —(1 + Szz) ymlxl + I’yxl.

This is (8.86),. Differentiating (8.91), with respect to x', taking account of (8.83),, we
get (8.86)4:

(8.92) X§1x2$2 =1V, + 1YV,

(8.91)
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We then replace Xl}l from (8.90) in (8.81),:

0=X2+2X +rX' +r X2+ X% +rVn +rYV,+
(8.95) +r Vgt + 5 Vory + 5" X

We differentiate this equation with respect to z:2, knowing V,» = 0:

o O X + 25, +r X +r X +r X2 +r X% + 1 X2 + 1 Vo + 1Y+
+r Vgt 4 Sp2 Vg + oo XL 45" X

We replace: X;Q from (8.89); Xg?%;? from (8.91),; we differentiate (8.81), with respect to

ztz! to replace X, , by r V1,1, thanks to (8.83),; and we reorganize:
(895) 2 X;2y+522 yx1y—i—s;2 X;l$1 = —X$21$2 —+r X1—|—r X2+r .)sz —+r yxl —+r yy+r yxlxl .
We differentiate (8.81), with respect to y and (8.81); with respect to x':
1
Xm12y + 9 Vary =0,
Vg —2X 50 = =X, + 1 Vot + t Vi

For the three unknowns X ., V,1,, X;Qy,
(8.96),, reminding s7,(0) = 0:

(8.96)

we solve the three equations (8.95), (8.96),,

XL =X+ r X2 v X% 1V + Yy + 1 Vg +r XA e,
(8.97) Vg =t X+ 1 X%+ v X%+t Y + 1Yy + t Vi +r X2 o,
Xoy =t X +r X2+ r X% + 1V + 1Yy + 1 Vg +r X
We get (8.86);; and (8.86),.
Thus, we may replace X, , and Y,1, in (8.81), to get (8.86),:
(8.98) X2 = —2Xy1 Fr X X XL Y+ rVy +r Ve + rX2 ..

Next, we differentiate (8.83); with respect to ! and we replace: Xxll from (8.90);
Xﬁl from (8.98); V,1, from (8.97),; Xl}lxl from (8.97);; Vyiz1,1 from (8.83);; and we
compare with (8.83),; we differentiate (8.96), with respect to 2! and (8.96), with respect
to z'; solving, we obtain four new relations:

Xhigig =1 X +r X2+ r X+t Y + 1Yy +r Vo + 1 X,
Vaigty = rx! +rX2+rX§2 FrYp +r Yy +r Vo, + rXflmQ,
Xy =1 X 0 X2 4 v X%+t Y+ 1 Yy 4 r Vo + 1 X,

A2 =X r X2 r X% 4t Vo + 0 Yyt Vg +r X2

We get (8.86), and (8.86),.
Next, in (8.81);, we replace: X, from (8.90); X% from (8.98); V1, from (8.97),; we
get:

(8.99)

(8.100) RO
+s Xxlml +s yyy+s Xmly-

We differentiate (8.98) with respect to ! and we replace: X 2}1 from (8.90); Xﬁl from
(8.98); Yy, from (8.97)y; Vy141,1 from (8.83); X2, , from (8.99),; we get:

xlzly

(8.101) X2 +2X,, =r X +r X2 v X +r X+ 1 Vo + 1Yy 41 Vg +1r X,
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In (8.82),, we replace: X, from (8.90); X7, , from (8.97)y; V.1, from (8.97),; and we
reorganize:

(8.102)

2Xx22y_6X;1y—X§1x1 = —nyy+rX1+rX2+r/Y§2 +r), +ryy+ryxlzl +r‘X:021:c2'
Differentiating (8.81); with respect to y, we replace: Y1, from (8.97)y; V1,1, from
(8.99),; and we reorganize:

(8.103) X2, — 22X, ==Yy +r X +r X2+ r X5 +r Vo +r Yy +t Vo +r X

For the three unknowns X2 ,, Xxlly, Xﬁzy, we then solve the four equations (8.101),

(8.102), (8.103), (8.83), (in which we replace: lel from (8.90); Xﬁl from (8.98); V.1,
from (8.97),; X, from (8.97),):
(8.104)

X =1 X +r X2 v X 0 X+t Vo + 1 Yy +t Vi + 1 X + 1Yy,
Xy =t X +r X2 v X +r X%+t Vo + 1Yy + 1 Vg + 1 X + 1Yy,
ngy =rX' +rX?+ erl Fr X%+t YV AtV + 1V +r XA + 1Y,

We get (8.86), and (8.86),. Replacing then X7 ,, X}, in (8.100) gives

(8.105) X2 =r X' +r X241 X +r X+ r Vo 4+ 1Yy 4 r Vo + 1 X0 + 1Yy,

This is (8.86);.
Next, we differentiate (8.103) with respect to ' and we replace: X}, from (8.90); X2
from (8.98); V1, from (8.97)y; Vy141,1 from (8.83); X? , , from (8.99),; we get:

(8.106) Vyryy+ X212, =2 X1, = r X' +r X2 r X1 Vo 1 Vy 1 Vot +1 X o,

Also, we differentiate (8.83); with respect to y and we replace: X; from (8.105); V1,
from (8.97),; Xmlly from (8.104),; Vy1,1, from (8.99),; we get:

(8.107) Vyryy—Xiar, = r X 41 X24r X}t X1 Vor 1 Vybr Vorgr 1 Xon o1 V.

aly
Also, we replace in (8.82);: X, from (8.90); X2 from (8.98); V1, from (8.97)y; X} .
from (8.97),; nglxl from (8.104),; Xmlly from (8.104),; we get:

(8.108) 4.X) +3 X2, = r X' +r X241 X 41 X1 Vot Yyt Vor g1+t X o 41 Yy,
We differentiate this equation with respect to 22 and we replace: 4 Xxlzyy by —2 V1,
from (8.89); X, from (8.98); Xxlzy from (8.97),; (notice 0 = V1,2 = V,2,); X2, from
(8.91)y; X2, , from (8.92); we get:

(8.109)

—2y$1yy+3)€x21m2y = er—i—rXQ—i—rX;—i—rXﬁg—i—ryml +r Yy +r Ve +r)(§1x2+ryyy.

For the three unknowns Xacllxly’ YV
(8.107), (8.108); we get:
(8.110)

Xhigty =t X 0 X240 X +r X5+ 1 Vot + 1Yy + 1 Vot + 1 X2 + 1Yy,

Viryy = rX1+rX2+er1 +rX222 FrYp +r Yy +rVun +r./'\f§1x2 +r Vyy,
Xy =t X 0 X2 v X v X+ 1V + 1Yyt Vg + 1 X + 1Yy

We get (8.86),, and (8.86),5.
Next, in (8.93), we replace: V,1, from (8.97),; Xxllxl from (8.97),; we get:

(8.111) Xzzl —1—2)(; =r X! —|—rX2—|—rX$22 FrYp +r Yy r Ve —|—r2€'m21$2.

vy Xﬁlgczy, we solve the three equations (8.106),
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We differentiate this equation with respect to y and we replace: X; from (8.105); X;y
from (8.104)5; V,1, from (8.97),; Vy1,1, from (8.99),; X? , from (8.99);; we get:

T Trey
(8.112) X2, 42X, = r X' +r X2 4r Xy +1 Xo+1 Vor +r Yyt 1 Vorg +1 X o +1 V.

For the two unknowns Xyly and Xﬁly, we solve the two equations (8.108) and (8.112); we
get:
8.113) X, =rX X2 v X +r X+t 1Yy + 1 Vo + 1 X + 1Yy,

' Xo, =r X 4 r X v X v X+ 1V + 1Yy + 1 Vo + 1 X+ 1Yy,

We get (8.86),5.
Next, we differentiate (8.113), with respect to ' and we replace: X}, X2, Xxlly, Vity,

2 . .
Vitgtat, Xx1x1x2, yxlyy, we get:

(8.114) x4

ey = rXt +r X% 4+ r)(; + r)(ﬁz FrYVp +r Yy +r Y + rXflxg +r Yy
Also, we differentiate (8.113), with respect to z' and we replace:
(B115) X2, =r X +r X +r X +r X4+ 1V + 1tV +r Voo + 1 X0 1Yy,

Also, we differentiate (8.83), with respect to y; we replace X ilyy from (8.114), we replace
Xﬁlxly from (8.115); and we achieve other evident replacements; we get:

(8.116) Vyyy = rXt 4+ r X%+ erl + rXxZQ Fr Yo +r Yy r Vg + r/Yfle +r Yy
This is (8.96),,, which completes the proof. 0

Theorem 8.117. The bound dim GYIM(E5) < 10 is attained if and only if (Es) is equiv-
alent, through a diffeomorphism (z', 2%, y) — (X', X2)Y), to the model system

(8.118) Y2 =0, Yyixix1 = 0.
Proof. Firstly, setting r = s* = 0 everywhere, the solution to (8.81), (8.82), (8.83) is
X'=k+(c+j)at —ba® —hy+tex'a! —da'a® + fa'ly —ea?y,
(8.119) X% =g+ 2hat +2j2% — da*a® 4+ 2exta? — falal,
Y=a+2bx" +2cy+datat +2exty+ fyy,

where a,b,c,d, e, f, g, h, j, k € K are arbitrary. Computing the third prolongations of the
ten vector fields

(8.120)
9 9 9
oxl’ 0x?’ oy’
0 0 0 0 0 0 0 0
_ .2 9 1 9 1 9 o 1 9 2 O a9 1 9
Y oxt 22 oy’ Y ozt T2y oy’ Y ozt 22 0x?’ Y ozt 22 0x?’
0 0 0 0 0 0
1,29 22 O 110 1.1 2., 9 1.2 9 1, 9
TL ST 8x2+a:a: o (xx xy)aml—i—%vx 8x2+2xy8y,

1, 9 1.1 9 o
T T 8m2+yy8y

one verifies that they all are tangent to the skeleton y, = %t(yl)Q, y1,1,1 = 0. Thus
the bound is attained. One then verifies ([FK2005a]) that the spanned Lie algebra is
isomorphic to s0(5, C).
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Lemma 8.121. Assuming the normalizations of Lemma 8.54, the remainder O, in (8.53)
is an Oz(x!, a'):
2xtal + 2lxta® + atata?®

1 — z2a?

(8.122) y = b+ + (@) R+ (2" R+2' (a')* R+ (a')*R.

Proof. Indeed, writing
(8.123) y=0b+ 2" A0 +a' A% 2t A0 4 ptat AM +atat A%+ Os(2t at),

with A% = A% (2% a?), and developing the determinant (8.54) with respect to the powers
of (x!,a'), the vanishing of the coefficients of cst., of ', of a' yields the system

0= AI,O AO,l
=N

22
(8.124) 0= A AR, —2AZ0 A% — AL ALY,
0=A" A%, — AL A% —2A%7 ALY

If the first equation yields Ay’ = 0, replacing in the second, using A>® = a? + O,, we
deduce that Ag’; = 0 also. Similarly, Ag;l = 0 implies Ai;o = 0. Since the coordinate
system satisfies the normalization I1(0, a) = II(z,0) = 0, necessarily A1 = O(a?) and
A% = O(2?). We deduce:

(8.125) 0= A0 = AOL

Redeveloping the determinant, the vanishing of the coefficients of z'z?!, of z'a!, of a'al
yields the system

— ALl 220 2,0 A 1,1
0=A Amgt12 — 2/\(12 A

z2)
®.129 0= AN AL — A AL AT AT
0= AM AN, —2A07 AL

Since A1(0) = 2 # 0, we may divide by A'?!, obtaining a PDE system with the three
functions Ai’zoaz, A;’Qlag, A2’22a2 in the left hand side. We observe that the normalizations of
Lemma 8.55 entail

(8.127) A*" = a? + O(a?a?), AY =24 O(2%a?), A%? = 2% + O(22a?).
By cross differentiations in the mentioned PDE system, it follows that all the Taylor coef-

ficients of A%°, AL, A%? are uniquely determined. As already discovered in [GM2003b],
the unique solution

a’ 2 x?
8.128 AP = —— AV Y= —— A2 =
( ) 1 — 2202’ 1 — 2202’ 1 — 2202’
guarantees, when the remainder O3(z!, a') vanishes, that the determinant (8.45) indeed
vanishes identically. 0

Conversely, suppose that dim GYM(E;) = 10 is maximal.
With ¢ # 0 small, replacing (z', 22, y, a', a®,b) by (ex', 2%, €%y, ea', a, eeb) in (8.122)
and dividing by ¢, the remainder terms become small:
2ztal + 2tata® + atalz?

(8.129) y=>b+ ;

1~ 22 + O(e).
Then all the remainders in the equations Ag, of the skeleton are O(s). We get ten gen-
erators similar to (8.120), plus an O(e) perturbation. Thanks to the rigidity of so(5, C),
Theorem 5.15 provides a change of generators, close to the 10 x 10 identity matrix, lead-

ing to the same structure constants as those of the ten vector fields (8.120). As in the end



LIE SYMMETRIES AND CR GEOMETRY 45

of the proof of Theorem 5.13, we may then straighten some relevant vector fields (exer-
cise) and finally check that their tangency to the skeleton implies that it is the model one.
Theorem 8.117 is proved. 0

Corollary 8.130. Let M C C3 be a connected real analytic hypersurface whose Levi
form has uniform rank 1 that is 2-nondegenerate at every point. Then

(8.131) dim hol(M) < 10,

and the bound is attained if and only if M is locally, in a neighborhood of Zariski-generic
points, biholomorphic to the model M.

§9. DUAL SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS

9.1. Solvability with respect to the variables. Let M be as in §2.10 defined by y =
II(x, a,b) or dually by b = II*(a, x, y).

Definition 9.2. M is solvable with respect to the variables if there exist an integer
k* > 1 and multiindices 6(1),...,d(n) € NP with |§(])] > 1 for | = ,n and
maxi <, |0(l)] = K%, together with integers j(1),...,j(n) with 1 < j(I) < m such that
the local K-analytic map

©3) K™ 3 (ry)— ((7(0,2,)' 95" (190, 0.2,y)) ) ek

is of rank equal to n + m at (z,y) = (0,0)

If M is a complexified generic submanifold, solvability with respect to the parameters
is equivalent to solvability with respect to the variables, because I1* = II. This is untrue
in general: with n = 2, m = 1, consider the system y,2 = 0, y,1,1 = 0, whose general
solutions is y(x) = b + x1a with 2 absent.

To characterize generally such a degeneration property, we develope both

v =1V (z,a,b) = Zmﬁﬂjab and
BEN?

Y = H*j(a,x,y) = Z a® H*%(x,y),

deNP

9.4)

with analytic functions I1/ 5(a,b), 1% (, y) and we introduce two K*-valued maps
Qr: (a,b) H -

9.5) ( ) ﬂfij <m
Qo : (zy) — (I(2,y))

SENP
Since b — (II}(0, b))lgjgm and y — (I1%(0, y))1<]< are already both of rank m at the
origin, the generic ranks of these two maps, defined by testing the nonvanishing of minors
of their infinite Jacobian matrices, satisfy

1<gj<m
= and

entk O, =m +p and
9.6) = %
genrk Q° = m + n

for some two integers 0 < pyp < pand 0 < < n. So at a Zariski-generic point, the
ranks are equal to m + paq and to m + npy.

Proposition 9.7. There exists a local proper K-analytic subset 4 of K x KJ' x K < K3
whose equations, of the specific form

9.8) S = {Tl,(a,b):(), veEN, ri(zy) =0 MEN},
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are obtained by equating to zero all (m + pa) X (m + paq) minors of Jac Qo and all
(m4nam) X (m+np) minors of Jac Q% , such that for every point p = (xp, Yp, Gp, b,) &
Yz, there exists a local change of coordinates respecting the separation of the variables
(x,y) and (a,b)

9.9) (z,y,a,b) — (¢(z,y), h(a,b)) =: (2,y,d" V)

by which M is transformed to a submanifold M’ centered and localized at p' = p having
equations

(9.10) y =1'(2',d' b))  and dually b =11"(d,2,y)
with I and 11" independent of
(9.11) (:):’HMH,...,g:;) and of (a;)MH,...,a;).

So M', may be considered to be living in K} x K} x KPM x Ky and in such a smaller
space, at p' = p, it is solvable both with respect to the parameters and to the variables.

Interpretation: by forgetting some innocuous variables, at a Zariski-generic point, any
M is both solvable with respect to the parameters and to the variables. These two as-
sumptions will be held up to the end of this Part I.

9.12. Dual system (£*) and isomorphisms SYM(E) =~ SYM(Vs(E)) =
SYM(Vs(E*)) ~ GYM(E*). To a system (£), we associate its submanifold of
solutions M := Vgs(€). Assuming it to be solvable with respect to the variables and

proceeding as in §2.10, we can derive a dual system of completely integrable partial
differential equations of the form

) b (a) = G2 (a,b(a), (550 (@), )

where (j,7v) # (4,0) and # (j(1),0(1)). Its submanifold of solutions Vs(E*) = Vs(E)
has equations dual to those of Vs(E).

Theorem 9.13. Under the assumption of twin solvability, we have:
9.14) SYM(E) ~ SPM(Vs(E)) = SPM(Vs(E¥)) ~ SYM(ET),
through L «—— L+ L* =L+ L «—— L*.

§10. FUNDAMENTAL PAIR OF FOLIATIONS AND COVERING PROPERTY

10.1. Fundamental pair of foliations on M. As in §2, let (£) and M = Vs(E) be
defined by y = II(x, a, b) or dually by b = I1*(a, z, y). Abbreviate
(10.2) z:=(x,y) and c:=(a,b).
Every transformation (z, ¢) — (¢(z), h(c)) belonging to G, stabilizes both {z = cst.}
and {c = cst.}. Accordingly, the two foliations of M
(10.3) Fo=UMn{c=c} and Foo=JMn{z=2}

co 20

are invariant under changes of coordinates. We call (F,, F,) the fundamental pair of foli-
ations on M. The leaves of the foliation by variables F, are n-dimensional:

(10.4) Fu(co) = {(Z’,Co) Y= H(%CO)}

The leaves of the foliation by parameters F, are p-dimensional:

(10.5) Folco) = {(20,¢) : b=TI"(a, 20)}
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We draw a diagram. In it, the positive codimension is invisible:

(10.6) m =dimM —dimF, —dimF, > 1
mnc R
KX
4\ /ﬁ mnL mnF,
4\ mn0 mnF, ;mnz
mnL 9
\nnM - mn

10.7. Chains I';, and dual chains I';. Similarly as in [GM2004, Me2005a, Me2005b,
MP2005] (in a CR context), we introduce two collections (Li)i<k<n and (L})1<q<p Of
vector fields whose integral manifolds coincide with the leaves of F, and of F:

(

0 NI 0
L, = — — b) — k=1,...
k (%k + — a&:k (x,a, ) ay37 ) y 1y
(109 9 " oI+ )
Lq:—%—i-jzl i (a,x,y)%, g=1,...,p.

Let (z0,c0) = (%o, Yo, a0,by) € M be a fixed point, let z; := (z1,...,27) € K" and
define the multiple flow map
(10.9)

L, (%0, Yo, @, bo) := exp(x1L)(po) := exp (z7Ln (- - - (exp(z1Li(20,c0))) -+ )
= (950 + 21, H(z0 + 21, 0, bo), ao, bo)~

Similarly, for a; = (ai, ..., d}) € K?, define the multiple flow map

(10.10) L: (@0, Y0, a0, bo) := (@0, Yo, a0 + a1, II*(ag + ay, xo, yo))-

Starting from the (29, ¢o) = (0, 0) and moving alternately along F,, F,, F,, efc., we obtain
Fy(e1) = L, (0),

Lo(z1,a1) := L, (Lsy (0)),
F3($1>alax2) ( (L (0)))7
)= L (L, (L, (0)),
and so on. Generally, we get chains 'y, := 'y ([zalx), where [zaly, = (21, a1, 22,a9,...)
with exactly £ terms, where each x; € K" and each a; € KP.

If, instead, the first movement consists in moving along F,, we start with I'j(a;) :=
L (0), I'5(ar, 1) := Ly, (L} (0)), etc., and generally we get dual chains I'}([ax];), where
lax]y = (a1, 21, az, T, ... ), with exactly k terms. Both I';, and I'} have range in M.

Fork =1,2,3,---, integers e, and e, are defined inductively by

e1+ ez +e3+ -+ e = genrkg (I'y),
ey +es+es+ -+ e = genrkg (I'7).
By (10.9) and (10.10), it is clear that e; = n, e2 = p, €] = p, and e} = n.

(10.11)

I‘4(1‘17 a1,T2, A2

(10.12)
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Example 10.13. For y,, = 0, the submanifold of solutions M is simply y = b + za,
whence

'y (x1) = (21,0,0,0),
(10.14) Loz, a1) = (21,0, a1, —z107),
[s(@1,a1,22) = (21 + @2, T2a1, a1, —2101).
The rank at (0,0, 0) of T'; is equal to two, not more. However, its generic rank is equal to

three. Similar observations hold for the two submanifolds of solutions y = b+ xxa + zaa
and y = b+ xa' + zxa® (in K°).

Lemma 10.15. If genrky (['xy1) = genrky (T'x), then for each positive integer | > 1, we
have genrky (I'y4;) = genrky (I'y). The same stabilization property holds for T';.

10.16. Covering property. We now formulate a central concept.

Definition 10.17. The pair of foliations (F,, F,) is covering at the origin if there exists an
integer k such that the generic rank of 'y is (maximal possible) equal to dimg M. Since
for a; = 0, the dual (k + 1)-th chain I'} 4 identifies with the k-th chain T';, the same
property holds for the dual chains.

Example 10.18. With n = 1, m = 2 and p = 1 the submanifold defined by 3! = b' and
y? = b*> + xa is twin solvable, but its pair of foliations is not covering at the origin. Then
SYM(M) is infinite-dimensional, since for @ = a(y') an arbitrary function, it contains
a(y") gor + a(b') o

Because we aim only to study finite-dimensional Lie symmetry groups of partial dif-
ferential equations, in the remainder of this Part I, we will constantly assume the covering
property to hold.

By Lemma 10.15, there exist two well defined integers p and p* such that
€3,€4,...,€441 > 0, but e,y = 0 forall [ > 2 and similarly, €3, e}, ... €54 > 0,
but e;* 4+ = 0 for all [ > 2. Since the pair of foliations is covering, we have the two
dimension equalities

n+p+e+---+eu =dimg M=n+m+p,

ptn+tey+---+e.=dmg M=n+m+p.

By definition, the ranges of I', ;1 and of I'/. ., cover (at least; more is true, see: Theo-
rem 10.28) an open subset of M. Also, it is elementary to verify the four inequalities

p < 1+m, < 14m,
p< 41, w <+ 1

In fact, since 'y, with z; = 0 identifies with ['}, the second line follows.

(10.19)

(10.20)

Definition 10.21. The type of the covering pair of foliations (F,, F) is the pair of integers
(10.22) (p, %), with  max(u, u*) <1+ m.

Example 10.23. (Continued) We write down the explicit expressions of I'y and of I';5:
(10.24)
Ty(z1, a1, @2, a9;0) = (21 + @2, T2a1, a1 + az, —x101 — T1as — Taay, ),

U5(z1, a1, 22, a2, 23;0) = (21 + 22 + T3, T2a1 + T301 + T30, 1 + az
— T1a1 — 102 — IQCLQ).

Here, dim M = 3. By computing its Jacobian matrix, I'5 is of rank 3 at every point
(71,0a1,0, —ay, —z1) € K® with a; # 0. Since (obviously)

(10.25) I5(z1,a1,0, —ar, —21) =0 € M,
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we deduce that ['; is submersive (“covering”) from a small neighborhood of
(331, a1, 0, —aq, —:cl) in K® onto a neighborhood of the origin in M.

10.26. Covering a neighborhood of the origin in M. For (29, cy) € M fixed and close
to the origin, we denote by I'y, ([zaly; (20, co)) and by I'; ([az]k; (20, ¢o)) the (dual) chains
issued from (2, ¢). For given parameters [za], = (21, a1, X2, ... ), we denote by [—zal

the collection (- -, —x9, —ay, —x2) with minus signs and reverse order; similarly, we
introduce [—ax]y. Notably, we have L_,, (L, (0)) = 0 (because L_,, 1., (-) = Lo(:) = Id),
and also L_,, (L*, (L¥ (L, (0)))) = 0 and generally:

(10.27) Ty ([—zaly; T ([zaly; 0)) = 0.

Geometrically speaking, by following backward the k-th chain 'y, we come back to 0.

Theorem 10.28. ([Me2005a, Me2005b], [*]) The two maps I'y, 11 and qu* 41 are sub-

mersive onto a neighborhood of the origin in M. Precisely, there exist two points

[zal9, ;€ KWHmtwr and [ax]) ., € KPP arbitrarily close to the origin with
0 _ 0 _

Doupa([raly, 1) = 0and T3, ([ax]3,. 1) = O such that the two maps

{ KktDntup o [wa)ay — F2u+1([xa]2/‘“) and

(10.29) . .
K+ WP 5 [az]gye g — L3y 1 ([az]20 +1> €M

are of rank n + m + p = dimg M at the points [valy, and [ax]3,. respectively. In
particular, the ranges of the two maps 'y, 11 and T3 . | cover a nezghborhood of the
origin in M.

Let 7m.(z,c) := zand 7.(z, ¢) := c be the two canonical projections. The next corollary
will be useful in Section 12. In the example above, it also follows that the map

(10.30) [zaly — 7 (Ta([zad])) = (a1 + a2, —z101 — 102 — T202) € K?
is of rank two at all points [za]] := (29, a,0, —a?) with af # 0.

Corollary 10.31. ([Me2005a, Me2005b], [x]) There exist two points [za]3, € Kr"*)
and lax]},. € K+ arbitrarily close to the origin with 7.(Ts,([za]3,)) = 0 and

2u
7 (L3, ([ax]o .)) = 0 such that the two maps

{ K*) 5 [zals, — 7. (Tou([za)z,)) € K™ and

(10.32) .
R0 3 arly (Tt )) € K7

are of rank m + p at the point [zal}, € K*"*?) and of rank n 4+ m at the point [ax]3,. €
KK (n+p),

In the case m = 1 (single dependent variable y € K), the covering property always
hold with p = p* = 2.

§11. FORMAL AND SMOOTH EQUIVALENCES BETWEEN SUBMANIFOLDS OF
SOLUTIONS

11.1. Transformations of submanifolds of solutions. Lemma 7.3 shows that every
equivalence ¢ between two PDE systems (£) and (&) lifts as a transformation which
respects the separation between variables and parameters of the form

(11.2)

(z,y,a,b) — (o(z,y), (2, y), fa,b), gla, b)) = (@(z,y), h(a,b)) =: (z',y,d, V)
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from the source submanifolds of solutions M := Vs(&) to the target M’ = Vs(&'),
whose equations are

y =1Il(z,c) ordually b=1II"(a,z) and

11.3 *
(11.3) y =1'(2',c) ordually b =1I"(d,2").

The study of transformations between submanifolds of solutions possesses strong similar-
ities with the study of CR mappings between CR manifolds ([Pi1975, Wel1977, DW1980,
BJT1985, DF1988, BER1999, Me2005a, Me2005b]). In fact, one may transfer the whole
theory of the analytic reflection principle to this more general context. In the present §10
and in the next §11, we select and establish some of the results that are useful to the Lie
theory. Some accessible open questions will also be formulated.

Maps of the form (11.2) send leaves of F, and of F, to leaves of F/, and of F;), respec-
tively.

mn mnF, mnF;,
‘ mnc kmnc'
ay (] M
‘mnI‘*([a 3) mn(@, h) m
l— 11—
""\‘/-/ \\\ TN
1 ‘l mn(‘lp(z)7 h(c ) 1 “\
% { ) — |7 { )
mng un %27 ==
- m S
- A Tmnr (ach)
4mn _mnz ‘mnC’ mnzf"
. J . J :

11.4. Regularity and jet parametrization. Some strong rigidity properties underly the
above diagram. Especially, the smoothness of the two pairs (F,, F;) and (F,, F,) governs
the smoothness of (¢, h).

We shall study the regularity of a purely formal map (2, ') = (¢(2), h(c)), namely

©(2) € K[2]""™ and h(c) € K[c]'*™, assuming (£) and (£’) to be analytic. Concretely,
the assumption that (¢, h) maps M to M’ reads as one of the four equivalent identities:

Y(z,1(z,¢)) = I'(¢(z,11(z, ¢)), h(c)),

( ) =1 (¢(2), h(a, 11" (a, 2))
g9(a, 11" (a, 2)) H’*(faH*az ,0(2)),
)

(11.5) )
g(c) =" (f(c), (z,11(z, c))),

in K[z, c]™ and in K[a, z]™

Theorem 11.6. Let (o, h) := M — M’ be a purely formal equivalence between two
local K-analytic submanifolds of solutions. Assume that the fundamental pair of foliations
(Fy, Fp) is covering at the origin, with type (u, jt*) at the origin. Assume that M’ is both
k-solvable with respect to the parameters and k*-solvable with respect to the variables.
Set 0 := p*(k + k*) and 0* := u(k* + k). Then there exist two K"""-valued and KP*™-
valued local K-analytic maps ®, and Hy«, constructible only by means of 11, 11*, I, IT"",
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such that the following two formal power series identities hold:

o(2) = O4(z, JLp(0)),
(11.7) { h(c) = Hy (c, Jf*h(O)),

in K[z]"™™ and in K[c]""™, where J'p(0) denotes the (-th jet of h at the origin and
similarly for J° h(0). In particular, as a corollary, we have the following two automatic
regularity properties:

e o(z) € K{z}""™ and h(c) € K{c}’*™ are in fact convergent;

e if in addition M and M’ are K-algebraic in the sense of Nash, then ®, and H-
are also K-algebraic, whence p(z) € Ag{z}"*" and h(c) € Ax{c}**"™ are in
fact K-algebraic.

Proof. We remind the explicit expressions of the two collections of vector fields spanning
the leaves of the two foliations F, and F:

( I\ § ¢ )
Ly = — e = =1,.
k 8!Ek +JZI 8!Ek (ZL‘,C) 6y]’ ) y 1,
(e 0 o= Ol 9
Lq:%—f—; dad (a,z)%, qzl,...,p.

Observe that differentiating the first line of (11.5) with respect to 2* amounts to applying
the derivation L;. Similarly, differentiating the third line of (11.5) with respect to a?
amounts to applying L;. We thus get for (z,c) € M

Lt () =3 00 (6(2),h(e) Le(2) - and

=1

Lyote) = 3 G (102D L 70,

r=1

(11.9)

Aok
02!

It follows from det (%2)(0) # 0 and det (%) (0) # 0 that the two formal determinants

(11.10) det (Ly ¢'(2)) 1S5

<k<n

and  det (L} fr(c))lgrgp

1<q<p

have nonvanishing constant term. Consequently, these two matrices are invertible in K[z]
and in K[c]. So there exist universal polynomials S] and S*/ such that

orr” St ({Le ' D150™)
5 (goz Jh(c)) = (Lo << and
(11.11) (b (2))1@@
. *j % 1.4 1</ <p+m
om’’ (f(c) @(Z)) S <{Lq’ h* (c) 1<¢'<p )
r ’ , 1<r'< )
\ da det (L f7(e)) o0 o

for1 <j<m,forl <l<n,forl <r<pandfor(zc) € M.
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Again, we apply the vector fields L to the obtained first line
the obtained second line, getting, thanks to the chain rule:
(11.12)

n

82 H/j

Rl ({Li L (2)

and the vector fields L; to

)

1</ <n+m

1<k KL <n and

i (0(2), hlc)) Li 6" (2) =
Pt ax'lll"l2( )

[det (L 07 (=

1<U'<n
1<k/<n

e

1</ <p+m

and

eI s R (L @15
W(f(c)a 90(2)) Ly f2(c) = o l<r<p] 2 ’
\ ro=1 [det(l_q, fT’ (C))lgq/@}
for 1 < j < m,for1 < ly,ly <n,forl <ry,ry < pandfor (z,¢) € M. Here, R/ ; and
R*/ . ¢ are universal polynomials. Then applying once more Cramer’s rule, we get
. : i 1</ <n+m
92117 S?MQ ({I—k’l Lkégp (Z) 1<k/1,k§<n>
[det(Lk, P (Z))1<k'<n]
(11.13) S " 1</ <p+
P 5*7{1 - <{LZ,1 L;,th (c)}lgq,qufz @)

W(f(c)790(2))

[det (LZ, fr(c))

\

By induction, for every j with 1 ) !
there exists two universal polynomials S% and S*J such that

1<r<p]?
1<q'<p

< j < mand every two multiindices 7 € N” and § € NP,

4 ; ;o <i'<n+m
oI Sp <{LB v (2) \16\’|<\\5I+ )
WG z),h(c)) = RPN and
[det(l-k’ ¢"'(z )1<k/\<n:|
(11.14) - 1</ <p+m
i 5 ({L2h @Y ya ™)
o F(0),0(2)) gy
N [ (L (e )1<q’<p]

Here, for #/ € N", we denote by L? the derivation of order || defined by

(Ll)/’i e (Ln)ﬁa.

defined by (L)% - - (L%)%.

Similarly, for &' € NP, L*¥ denotes the derivation of order |0|

Next, by the assumption that M’ is solvable with respect to the parameters, there exist

integers j(1),...

,7(p) with 1 < j(¢) < m and multiindices §(1),. ..

,B(p) € N™ with

18(¢)| > 1 and max;<,<, |5(¢)| = & such that the local K-analytic map

j ; i(9)
(11.15) KPI™ 3 —s (H/J(ch/»lQém, ( (

/
0,c ))
1<g<p

c KTH‘W

is of rank p+m at ¢ = 0. Similarly, by the assumption that M’ is solvable with respect to

the variables, there exist integers 7~ (1), ...
5(1),...,0(p) € N™ with |[6(q)|
analytic map

.77 (n) with 1 < 5~
> 1 and maxi <., [0(q)] =

a|5(5)|H/*j~(l)

n+m *J 1<gsm
(11.16) K 32— <(H/ (0, Z/)) ’ ( 9a’®

(1) < m and multiindices
k* such that the local K-

(0, z’)> ) e KM
1<I<n

=X
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is of rank n + m at 2/ = 0. We then consider from the first line of (11.14) only the
(p + m) equations written for (7,0), (j(¢),5(¢q)) and we solve h(c) by means of the
analytic implicit function theorem; also, in the second line of (11.14), we consider the
(n 4+ m) equations written for (7,0), (j~(), (1)) and we solve (z). We get:

4 . -/
S](l) ({L’Blgoil(z) 1< <n+m>
B(1) 18'1<18(1)]
h(c) =H [ ¢(2),

) L<l'<n 21B()+17 "
det [(Lk’ ¢! (Z>)1<k’<ni|

i(p) 1</ <n+m
Sh) ({L o' |ﬁf\<|ﬁ<p>|)

, 1<l’<n 2|B(p)|+1 ’
det [ Lk’ o' (= 1<k/<n]
(11.17)
*] «0' 1.4 1<z'<p+m
s S ({'- h*(c) |6'|<|6(1)|)
p(z) =@ | flo), <y OO
det(Ly 17 (0) 52

S*fS(Nn()n) <{ L*é’ hz” (C) 1<i/<p+m>

|6"1<[6(n)]

“ey . o 1<7’,<p 2‘6(n)|+1 9
[det(Lq/ S (C))1<q'<p]

\

for (z,c¢) € M. The maps H and ® depend only on IT', IT'*.

Lemma 11.18. For every 3’ € N7, there exists a universal polynomial Pg in the jet

variables J |l having K-analytic coefficients in (z, c) which depends only on I1, IT* such
that, fori' =1,...,n+ m:

/

(11.19) L7 5" (2) = Py <z, ¢, Jf"gpi’(z)) .

A similar property holds for L*9'h¥(c).

We deduce that there exist two local K-analytic mappings ®) and H{ such that we can
write

_ 50 K*
(11.20) {90(2) = 04(z, ¢, JI h(c)),

h(c) = Hy(z, ¢, Jip(2)),

for (z,¢) € M. Concretely, this means that we have two equivalent pairs of formal
identities

o(z) = @8(z, a, I1*(a, 2), Jf*h(a, IT*(a, z)))
(1121 cp(x,H(:z:,c)) = @80(33, (z,c), ¢, JF h(c))
h(c) = Hy (x, [(z,c), c, J:go(x,H(m,c)))
h(a,H (a, z)) = Hg(z, a, I1*(a, 2), Jfgp(z))

in K[a, 2]"™ and in K[z, c]""™. We notice that, whereas ¢ and h are a priori only
purely formal, by construction, ®f and H{ are K-analytic near ((), 0, Jf*h(O)) and near
(0,0, 72¢(0)).
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Next, we introduce the following vector fields with K-analytic coefficients tangent to

M:
o AT d
j::(?_yj+z W(a’z)@’

=1
Ve Zanl o
V5= (%J al, j=1...,m.

Indeed, we check that Vj, [b> — I1*/2(a, z)] = 0 and that V7 [y”> — II7(x, ¢)] = 0.

(11.22)

For & € N™, we observe that V¥ ¢ = 8‘ l . Applying then L% with 5/ € N”, we get
fori=1,....,n+m:
(11.23) LIV G (2) = Qursr (2, ¢, I (2)),

with Qg s universal. Since the n + m vector fields L;, and V;, having coefficients de-
pending on (2, c), span the tangent space to K} x K7, the change of basis of derivations
yields, by induction, the following.

Lemma 11.24. For every o € N"t™ there exists a universal polynomial P, in its last
variables with coefficients being K-analytic in (z, ¢) and depending only on 11, 11* such
that, fori=1,...,n+ m:

(11.25) 020 (2) = Pa (210, (VT (2)) i)

We are now in position to state and to prove the first fundamental technical lemma
which generalizes the two formulas (11.20) to arbitrary jets.

Lemma 11.26. For every A € N, there exist two local K-analytic maps, ®) valued in
K(”+m)ci+m+k, and H()\ valued in K(p+m)03+mﬂ, such that:

J)\ (I))\ JN*Jr)\h
(1127) ng(Z) 0(27 C, c (C))7
J2h(e) = Hy (2, ¢, JE ().

Proof. Consider for instance the first line. To obtain it, it suffices to apply the derivations
LA'V9 with | 3’| + |8'| < A to the first line of (11.20), to use the chain rule and to apply
Lemma 11.24. 0J

Let 0 € K, 1 € N, let Q0) = (Qi(0),...,Qnizmip(0)) € K[O]""*™" and let
a; € KP. As the multiple flow of L* given by (10.10) does not act on the variables (z,y),
we have the trivial but crucial property:

(11.28) v (L, (Q0))) = ¢ (m=(L3,(Q(0)))) = ¢ (7-(Q(0))) = ¢ (Q(0)) -

At the end, we allow to suppress the projection 7,: this slight abuse of notation will
lighten slightly the writting of further formulas. More generally, for A € N, a; € KP?,
T € K™

J2o(L:(Q0)) = J2¢(Q(0)) and

.29
(1129) T(Ley (Q(6))) = Jh(Q(0)).
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As a consequence, for 2k even and for 2k + 1 odd, we have the following four cancellation
relations, useful below (we drop 7, and m, after .Jp and after J2h):

L2 o(Tar([zalor)) = 2o (Tapr ([zalon)),
JAn(T5([axlr)) = J2h(Dy ([ax]or—1)),
Lo (o ([az]oni1)) = T2 (Do ([az]ar)),
I (Dopri([zalanr1)) = J20(Tar([zalar)).

We are now in position to state and to prove the second main technical proposition.

(11.30)

Proposition 11.31. For every even chain-length 2k and for every jet-height \, there exist

A
two local K-analytic maps, 3, valued in K™ mix, and H2,, valued in KPT™ Cpemea
such that:

(11.32) { T2 (F;k([ax]Qk)) = Oy, ([aa?]zk, Jf(”“*)ﬂ go(O)) and

T2 (Car(fmalae)) = H (walas, JEE470(0)

c

Similarly, for every odd chain length 2k + 1 and for every jet eight ), there exist two local
K-analytic maps, ®},,, valued in K"™Cemix and Hy,, | valued in K®+MCpmi,
such that:

e (F2k+1 ([xa]2k+1)) = q)g\k—&-l ([xa]2k+1, Jf%(kﬂ)n*ﬂ h(O)) )
(11.33) N o (k+1)rtkr*+A

Joh (F2k+1([a$]2k+1)) = Hopia ([ax]2k+1> J; 90(0)) .
These maps depend only on 11, TT*, TI', II"*.

Proof. For 2k + 1 = 1, we replace (z,c¢) by I'1([xzal;) in the first line of (11.27) and
by I'j([ax];) in the second line. Taking crucially account of the cancellation proper-
ties (11.29), we get:

(2o (T1([za))) = @5 (Ti([zaly), J& A h(T1([zay)))

(11.34)

\ ) (faz)y, J20(0).

Here, the third line defines ®7 and the sixth line defines H7. Thus, the proposition holds
for2k+1=1.

The rest of the proof proceeds by induction. We treat only the induction step from an
odd chain-length 2%k + 1 to an even chain-length 2k + 2, the other induction step being
similar.

To this aim, we replace the variables (z, c) in the first line of (11.27) by I}, , ([a7]2x+2).
Taking account of the cancellation property and of the induction assumption:

(11.35)

T2 (Tira(a2lani2)) = @ (Tapaa(laalapsa), JE R (Thipa(lazleso)) )
= (I)S <F§k+2([@ﬂ?]2k+2), Jf*+Ah(F§k+1([a$]Qk+1))>
= 9 (F§k+2([a$]2k+2)7 my ([a$]2k+1, JC(HI)(H%*)HSD(O)))

= ®Yn <[a$]2k+2» Jékﬂ)(ﬁﬂ*)ﬂg’(o)) ’
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The last line defines ®3,,,. Similarly, we replace (z,c) in the second line of (11.27)

by I'axio([xa)ors2). Taking account of the cancellation property and of the induction
assumption:

(11.36)
J2h(Topro([za)okto)) = Hp <F2k+2([$a l2k+2), Ao (Topr2([zaloni2) ))
= H} (F2k+2([9€a oit2), JET Ao (Toprr ([walaksn ))
= Ho (F2k+2([xa okr2), %H ( valopin, J. k+1)(n+n*)+)\h(0)))
=: Hj).\o ([m]2k+2a JFr st )Hh(o)) :
This completes the proof. 0

End of the proof of Theorem 11.6. With (u, ;i*) being the type of (F,, F,) and with
la ] given by Corollary 10.31, the rank property (10.32) insures the existence of an

afﬁne (n + m)-dimensional space H C K* (P*") passing through lax]3,. and equipped
with a local parametrization

(11.37) K™ 3 s+ [ax]au-(s) € H
satisfying [ax]s,-(0) = [ax]], ., such that the map
(11.38) K™ 5 5 — . (15, ([az]o,- (s))) =: 2(s) € KM

is a local diffeomorphism fixing 0 € K"+, Replacing z by z(s) in ¢(z) and applying the
formula in the first line of (11.32) with A = 0 and with £ = 2u*, we obtain

p(2(s)) = @ (. (T3, ([az]o, (5)))
(11.39) = ¢ (5, ([az]24-(5)))
= (I)gu* ([ax]Qu* (5)7 Jg*(n—i—ﬁ*)@(o)) :
Inverting s — 2z = z(s) as z — s = s(z), we finally get
o(2) = p(2(5(2))) = Y0 (lazzye (s(2)), J2*Hp(0))
=: By (2, JLHp(0))

with ¢ := p*(k + k*), where the last line defines ®,. In conclusion, we have derived the
first line of (11.7). The second one is obtained similarly.

If TI, IT*, IT, TI"* are algebraic, so are Ty, T}, H,o, ), Hy, @7, HY and &y, H-.

The proof of Theorem 11.6 is complete. U

(11.40)
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I1: Explicit prolongations of infinitesimal Lie symmetries
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§1. JET SPACES AND PROLONGATIONS

1.1. Choice of notations for the jet space variables. Let K = R or C. Letn > 1 and
m > 1 be two positive integers and consider two sets of variables 7 = (x!,... 2") € K"
and y = (y',...,y™). In the classical theory of Lie symmetries of partial differential
equations, one considers certain differential systems whose (local) solutions should be
mappings of the form y = y(z). We refer to [011986] and to [BK1989] for an exposi-
tion of the fundamentals of the theory. Accordingly, the variables x are usually called
independent, whereas the variables y are called dependent. Not to enter in subtle regu-
larity considerations (as in [Me2005b]), we shall assume C*°-smoothness of all functions
throughout this paper.

Let x > 1 be a positive integer. For us, in a very concrete way (without fiber bundles),
(n+m)!

the k-th jet space J,;,, consists of the space K tmtm=rm equipped with the affine co-
ordinates

P B B | J
(1.2) (l’ Yo Yins Yirgior oo e ’yi17i2,~-~,in) )
having the symmetries
J )
(1.3) Yirsizyesin — yia(l)zia(Q)v"'rio'()\)’

for every A with 1 < A < & and for every permutation o of the set {1,...,\}. The
variable yf Lis....iy 18 an independent coordinate corresponding to the A-th partial derivative
m(ﬁ%. So the symmetries (1.3) are natural.

In the classical Lie theory ([OL1979], [O11986], [BK1989]), all the geometric objects:
point transformations, vector fields, efc., are local, defined in a neighborhood of some
point lying in some affine space K. However, in this paper, the original geometric
motivations are rapidly forgotten in order to focus on combinatorial considerations. Thus,

to simplify the presentation, we shall not introduce any special notation to speak of certain
) (ntm)! .
local open subsets of K"*™, or of the jet space J,,, = K" "l erc.: we will

always work in global affine spaces K.

1.4. Prolongation ¢(*) of a local diffeomorphism ¢ to the x-th jet space. In this para-
graph, we recall how the prolongation of a diffeomorphism to the «-th jet space is defined
([OL1979], [O11986], [BK1989]).

Let 2, € K" be a central fixed point and let o : K"*™ — K"*™ be a diffeomorphism
whose Jacobian matrix is close to the identity matrix, at least in a small neighborhood of
T,. Let

KoL i, J J J K
(1.5) To = (T Yl Vi Hivizin) € T,

be an arbitrary x-jet based at . The goal is to defined its transformation ¢(*) (Jr) by ¢.
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To this aim, choose an arbitrary mapping K" > z +— g(z) € K™ defined at least in a
neighborhood of x, and representing this «-th jet, i.e. satisfying

Mg
S B L))
for every A € N with 0 < A\ < &, for all indices i1, ...,7) with 1 < 41,...,7) < n and
for every j € N with 1 < 7 < m. In accordance with the splitting (a:, y) € K" x K™ of

coordinates, split the components of the diffeomorphism ¢ as ¢ = (¢,1) € K" x K™.
Write (7, 7) the coordinates in the target space, so that the diffeomorphism ¢ is:

(1.7) K™ > (z,y) — (7,7) = (¢(z,y), Y(z,y)) € K™

Restrict the variables (x,y) to belong to the graph of g, namely put y := g(z) above,
which yields

(1.6) Yiir,ooin =

.....

As the differential of ¢ at x, is close to the identity, the first family of n scalar equations

may be solved with respect to x, by means of the implicit function theorem. Denote
x = X(T) the resulting mapping, satisfying by definition

(1.9) T=¢(X(T),9(X(T))) -
Replace = by X(7) in the second family of m scalar equations (1.8) above, which yields:
(1.10) v =4 (x(@),9(x(T))) .

Denote simply by 7 = () this last relation, where g(-) := ¥ (X(+), 9(x(*)))-

In summary, the graph y = g(x) has been transformed to the graph 7 = §(7) by the
diffeomorphism ¢.

Define then the transformed jet ") (J;) to be the x-th jet of g at the point Z, :=
¢(z.), namely:

a)\—j 1<gsm
1.11) () (J5) 1= (W—g(f*)) € Tl -

... 970N
o7 1<i1 enyin <1, 0KAH

It may be shown that this jet does not depend on the choice of a local graph y = g(x)
representing the r-th jet J; at z.. Furthermore, if m, := J7,, — K™ denotes the
canonical projection onto the first factor, the following diagram commutes:

p(R)
T —— Tl

ml lm .

Kn—l—m L> Kn+m

1.12. Inductive formulas for the x-th prolongation ©*). To present them, we change
our notations. Instead of (Z,7), as coordinates in the target space K" x K™, we shall use
capital letters:

(1.13) (X' XY YT

In the source space K"*™ equipped with the coordinates (x,y), we use the jet coordi-
nates (1.2) on the associated x-th jet space. In the target space K"™™ equipped with the
coordinates (X, Y"), we use the coordinates

(1.14) (XL YT Y0 Y e Yl )

Y X’Ll ) X’Ll X22 Y Y X11X12 Xzﬁ
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on the associated «-th jet space; to avoid confusion with v;,, ¥, 4,, . . . in subsequent for-
mulas, we do not write Y;,, Y ;,,.... In these notations, the diffeomorphism ¢ whose
first order approximation is close to the identity mapping in a neighborhood of x, may be

written under the form:
(1.15) pr (@) = (X)) = (X y) VI ).

for some C>-smooth functions X*(z*, 4’ ),i = 1,...,n,and Y7 (2% /), j = 1,...,m
The first prolongation () of ¢ may be written under the form:

16 ¢ (27 k) (X7, YRy, Y <wy”yjl>>

for some functions Y)J(Z1 < T ) which depend on the pure first jet variables y .- The
way how these functions depend on the first order partial derivatives functions X;Z.,, X; s
Y7, Y;jj/ and on the pure first jet variables yf,ll is provided (in principle) by the following
compact formulas ([BK1989]):

-1

Y, DIX' ... Dlxn Dy
(1.17) : = : cee : : )
Y. DIX' ... DLX" DLY7
where, for i’ = 1,...,n, the symbol Dl-l/ denotes the ¢'-th first order total differentiation
operator:
0 "0
1.18 D} = — .

Striclty speaking, these formulas (1.17) are not explicit, because an inverse matrix is in-
volved and because the terms D} X*, D}Y7 are not developed. However, it would be
feasible and elementary to write down the corresponding totally explicit complete formu-

las for the functions Y7, = Y7 ( "oyl v; /)

X X
Next, the second prolongation ¢? is of the form
(1.19)
@) . s (oM (7 " LYY, U L
2 . 7y y/7y1/12'2 2 xr .,y 7?Jl/1 X1 X2 xr .,y 7yl/17yl/171/2 )
for some functions Y)J(,1 iz (m"/, Y, yf{ , yf{ Z./2> which depend on the pure first and second
jet variables. For ¢ = 1,...,n, the expressions of Y)](l1 +: are given by the following
compact formulas (again [BK1989]):
n o\ -1
Y Dix' .- DiX DQYén
(1.20) : = : e : ,
1yl .. 1yn 2
Y DLX DLX DnY;m
where, fori’ = 1, ..., n, the symbol D? denotes the 7'-th second order total differentiation
operator:
2.
(1.21) D? = az’ Zy,ajJerZyHlaj.
!/ l/ 71

Again, these formulas (1.20) are not explicit in the sense that an inverse matrix is involved

and that the terms D} X", D? Y)j(n are not developed. It would already be a nontrivial
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computational task to develope these expressions and to find out some nice satisfying
combinatorial formulas.

In order to present the general inductive non-explicit formulas for the computation of
the x-th prolongation ¢(*), we need some more notation. Let A € N be an arbitrary integer.

Fori' =1,...,n,let D?, denotes the i'-th A-th order total ditferentiation operators, defined
precisely by:
(1 .22)

DTS SP I

J'=1 =1 Y; =1 4} ,ih=1 11722

. 0
s Z Z yi 11585 le 1 F

o !
L =1 4f,i5,...,05 1= Pstarty g

Then, for i = 1, ..., n, the expressions of Y)j(n NI, given by the following com-
pact formulas (again [BK1989]):
. R \
Y)](h...XiA—le D%Xl T D%X D Y)j(n X1
(1.23) : = : . : :
J Lyl .. 1xn AyJ
YXH LXIA—1 xn DTLX DNX DnYXn X1

Again, these inductive formulas are incomplete and unsatisfactory.
Problem 1.24. Find totally explicit complete formulas for the r-th prolongation "),

Except in the cases K = 1,2, we have not been able to solve this problem. The case
r = 1 is elementary. Complete formulas in the particular cases k = 2, n = 1, m > 1
and n > 1, m = 1 are implicitely provided in [Me2004] and in Section ?(?), where
one observes the appearance of some modifications of the Jacobian determinant of the
diffeomorphism ¢, inserted in a clearly understandable combinatorics. In fact, there is a
nice dictionary between the formulas for ¢(?) and the formulas for the second prolongation
L of a vector field £ which were written in equation (43) of [GM2003a] (see also
equations (2.6), (3.20), (4.6) and (5.3) in the next paragraphs). In the passage from gp(z)
to £?), a sort of formal first order linearization may be observed and the reverse passage
may be easily guessed. However, for x > 3, the formulas for () explode faster than the
formulas for the x-th prolongation £*) of a vector field £. Also, the dictionary between
©*) and £*) disappears. In fact, to elaborate an appropriate dictionary, we believe that
one should introduce before a sort of formal (x — 1)-th order linearizations of ¢(*), finer
than the first order linearization £*). To be optimistic, we believe that the final answer to
Problem 1.24 is, nevertheless, accessible after hard work.

The present article is devoted to present totally explicit complete formulas for the «-th
prolongation L") of a vector field £ to jﬁm, for n > 1 arbitrary, for m > 1 arbitrary and
for k > 1 arbitrary.

1.25. Prolongation of a vector field to the ~-th jet space. Consider a vector field
n ' 8 m .
1.26 L= X" — J —
(1.26) Zl (2,y) 3$Z+jzly (2, y)

defined in K™, Its flow:

(1.27) @i(w,y) = exp (tL) (z,y)

constitutes a one-parameter family of diffeomorphisms of K"*™ close to the identity. The
lift ()" to the x-th jet space constitutes a one-parameter family of diffeomorphisms of
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Jm- By definition, the x-th prolongation L") of L to the jet space Jm 18 the infinitesi-
mal generator of (¢,)*), namely:

1.28 LM = —
(1.28) o

[(‘Pt)(ﬁ)} .

t=0

1.29. Inductive formulas for the x-th prolongation £*). As a vector field defined in
(n-tm)

Rrtmtm G , the x-th prolongation £*) may be written under the general form:
Z X ay]

(1.30) +>. ). nw*Z > il,igayT+"'+

j=1 i1=1 i j=1 d1,ia=1 i1,

m n a

J
Y YL
\ =1 i1,..,ix=1 T yenes Tk

Here, the coefficients Y7, Y7 .. ..., Y? , . are uniquely determined in terms of
partial derivatives of the poefﬁcwnts X “and )Y of the original vector field £, together with
the pure jet variables (yf»l, Y ZK) by means of the following fundamental inductive

formulas ([OL1979], [O11986], [BK1989]):

(1.31)

n
J . K J § : 1 kY ,J
Yll 12,..., = D (Yll 12,. ) o Dim (X ) yi17i2,---7in71,/€’
k=1

where, for every A € N with 0 < A < k, and for every i € N with 1 < ¢/ < n, the i'-th
A-th order total differentiation operator Di)) was defined in (1.22) above.

Problem 1.32. Applying these inductive formulas, find totally explicit complete formulas
for the k-th prolongation L)

The present article is devoted to provide all the desired formulas.

1.33. Methodology of induction. We have the intention of presenting our results in a
purely inductive style, based on several thorough visual comparisons between massive
formulas which will be written and commented in four different cases:

(i) n=1and m = 1; kK > 1 arbitrary;
(ii)) n > 1 and m = 1; k > 1 arbitrary;
(iii) n = 1and m > 1; k > 1 arbitrary;
(iv) general case: n > 1 and m > 1; k > 1 arbitrary.

Accordingly, we shall particularize and slightly lighten our notations in each of the
three (preliminary) cases (i) [Section 2], (ii) [Section 3] and (iii) [Section 4].
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§2. ONE INDEPENDENT VARIABLE AND ONE DEPENDENT VARIABLE

2.1. Simplified adapted notations. Assumen = 1andm = 1, let k € N with x > 1 and
simply denote the jet variables by:

(22) (xayaylay%"'?yﬁ) 6\71’71'

The x-th prolongation of a vector field £ = X ~+ v o will be denoted by:

0 0 0 0
2.3 LF =x — Y Yo— 4 +Y, —.
(2.3) 8a:+y + 181+ 28y2+ + o
The coefficients Y1, Yo, ..., Y, are computed by means of the inductive formulas:

Y, = Dl(y> - DI(X) Y1,
Y, := D*(Y,) — DY(X) v,

2.4)

where, for 1 < \ < k:

0 0 0
(2.5) D= — 4y — Yyt u

Oz oy oy Oya_1

By direct elementary computations, for x = 1 and for k = 2, we obtain the following two
very classical formulas :

Yl — yz + [yy - XI] Y1 + [_Xy] (y1)27
(2.6) Yo = Vor + 2V — Xo2] g1+ V2 — 2] (1) + [=X,e] (1)°+
+ [y 2] yo + [-3 8] v1va.
Our main objective is to devise the general combinatorics. Thus, to attain this aim, we
have to achieve patiently formal computations of the next coefficients Y3, Y, and Y;5. We
systematically use parentheses [-] to single out every coefficient of the polynomials Y,
Y, and Y5 in the pure jet variables y1, y2, y3, y4 and ys, putting every sign inside these
parentheses. We always put the monomials in the pure jet variables y1, y2, ¥3, ¥4 and ys

after the parentheses. For completeness, let us provide the intermediate computation of
the third coefficient Y5. In detail:

Y3 =D*(Y,y) — D' (X) 3
0 3 8 a
+ (Ve — 2 Xy, (yl) [—X,2] (yl) +

+ D)y —2 Xz] Y2 + [_3 Xy] n y2>

= + 2 Y2y = Xy Do = 2 X2 (W@ + [ Xy (y1>3@+

(27) + [yl’y -2 sz] yQE + [_3 Xxy] ylme + D}x2y] y1@+
+ [2 yxy2 - X:ﬂy] (%)2@ + [yy3 — 2 vayQ] (91)3E + [_Xy3] (?/1)4E+
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+ [yy2 —2 Xxy] 913/2@ + [_3 XyQ] (y1)292D + [2 Yy — Xaﬂ] y2D+
+ V2 — 24 291?&@ + [ X,2]3(1)° yQD + =3 (12)° D+

+ [V, —2X,] Ysrg] + [-3 &] YLy
[ ]?/3@ [ }yl?/:%D

We have underlined all the terms with a number appended. Each number refers to the
order of appearance of the terms in the final simplified expression of Y3, also written
in [BK1989] with different notations:

Y3 = Vo + 32y — Xoa) g1 + [B Va2 — 3 X2, (11)°+
+ Ve = 3Xe2] (11)° + [ ] (1) + [3Vey — 3 Xpo] yot
+ 3V = 9l yiys + [-6 X2 (41)ya + [-3 X)) (12)°+
+ [Vy = 3X]ys + [-4 X y1ys.

After similar manual computations, the intermediate details of which we will not copy in
this Latex file, we get the desired expressions of Y4 and of Y. Firstly:

Y=Y+ [AVs, — Xpa] g1 + [6Ve22 — 4 X3, (11)°+
A Vs — 6 X2, (11)* + [Vys — 4 Xys] (y1)" + [~ Xy (y1)°+

(2.8)

+
+ [6 V2 — 4 X3 y2 + [12V,2 — 18 X2, | yryo+
(2.9) +[6Yys — 24 X,0] (11)y2 + [—10 Xs] (11) g+
+ [3y 2 — 1220 (y2)* + [15 X2 ] w1 (y2)*+
[ AVey — 6 X,2] ys + [4V,2 — 16 Xy y1ys + [—10 X2 ] (11)%ys+
+ [—10 Xy] yoys + [Vy — 4 Xp] ya + [-5 X)) y1ya.
Secondly:
Y5 = Vo5 + [5Vuty — Xos| y1 + [10 Vasye — 5 Xpa, | (11)*+
10 yﬁ — 10 X,s,2] (11)° + [5Vuys — 10 Xp2ps] (1) "+
Xy (y1)° + [—%,5] (y1)° + [10 V3, — 5 Xya| Y2t
30 Vazy2 — 30 Xyay | 12 + [30 Vo — 60 Xyz2] (y1) yo+
10Y,s — 50 Xyy] (1) y2 + [—15 Xye] (y1) yo+
(2.10)

45 X,a] (1) (v2)* + [-15 X2 ] (2)*+
10V,2y — 10 X,s] y3 + [20 Yy — 40 X2, ] y1ys+
10,5 — 50 Xy ] (y1)%y3 + [—20 Xys] (y1) ys+
10,2 — 50 me] yays + [—60 X2 ] yryoys + [—10 X, (ys)*+
5Vay — 10 X2l ys + [5 V2 — 25 Xy yrya + [—15 X2 ] (y1) yat
15 Xy) yoya + [Vy — 5 Xyl ys + [—6 Xy y1ys.

+]
+ [V
+]
+]
+ [15 V.2 — 30 Xz, | (y2)? + [15 Vs — 75 Xyy2| w1 (y2)*+
+[-
+]
+]
+]
n

[
( +[-
2.11. Formal inspection, formal intuition and formal induction. Now, we have to
comment these formulas. We have written in length the five polynomials Yy, Yo, Y3,
Y, and Y5 in the pure jet variables vy, y2, ¥3, ¥4 and y5. Except the first “constant” term
YV.~, all the monomials in the expression of Y, are of the general form

(2.12) (yM)m (yM)m T (y)\d)ud )
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for some positive integer d > 1, for some collection of strictly increasing jet indices:
(2.13) 1< M <A< - <A <K,

and for some positive integers (i1, . . ., ttg = 1. This and the next combinatorial facts may
be confirmed by reading the formulas giving Y1, Yo, Y3, Y, and Y. It follows that the
integer d satisfies the inequality d < « + 1. To include the first “constant” term Y,~, we
shall make the convention that putting d = 0 in the monomial (2.12) yields the constant
term 1.

Furthermore, by inspecting the formulas giving Y1, Ys, Y3, Y, and Y5, we see that
the following inequality should be satisfied:

(214) Ml)\1+u2)\2+"‘+,ud)\d</€+1.

For instance, in the expression of Y, the two monomials (1 )3y, and 4 (y»)? do appear,
but the two monomials (y;)*y» and (y1)?(y2)? cannot appear. All coefficients of the pure
jet monomials are of the general form:

(2.15) [A eyt — B Xpariys]

for some nonnegative integers A, B, v, 3 € N. Sometimes A is zero, but B is zero only for
the (constant, with respect to pure jet variables) term )/,~. Importantly, X is differentiated
once more with respect to x and ) is differentiated once more with respect to y. Again,
this may be confirmed by reading all the terms in the formulas for Y;, Yo, Y3, Y, and
Ys.

In addition, we claim that there is a link between the couple («, 3) and the collection

{1, A1, ..., pa, Aq}- To discover it, let us write some of the monomials appearing in the
expressions of Y, (first column) and of Y5 (second column), for instance:
( [6 yx2y2 - 4X:fc3y] (y1>27 [5 yﬂﬁy4 —10 X$2y3} (91)4;
[12 yryz — 18 Xm?y] Y1Y2, [30 y:cyS — 60 Xﬁy?] (91)29%
(2.16) 4 [F10 ] (1) s, (=15 X,] (11) e,
[4Yy2 — 16 Xy Y1y, [10 Vy2 — 50 Xuy] yays,
( [=10 X2] (1), [—60 X,2] y192ys.

After some reflection, we discover the hidden intuitive rule: the partial derivatives of )
and of X" associated with the monomial (yy, ) - - - (y,,)"¢ are, respectively:

2.17)

yxﬂ—m)\l—m—#dw yr1t o tig
erﬁ*u1>\1*“‘*ud>\d+1 yr1trg =l
This may be checked on each of the 10 examples (2.16) above.
Now that we have explored and discovered the combinatorics of the pure jet monomials,

of the partial derivatives and of the complete sum giving Y ., we may express that it is of
the following general form:

rk+1

RS IR SED SRS SENNND S

d=1 1<\ << <k p12l,pq2l pi A4+ pghg<k+1

(2.18) [Aéul,xl),...,(ud,Ad) ¢ VoM = ah g+ —
_BIng,)\l),...’(Hda)\d) . szuﬂrmﬂukdﬂyu1+~-+ud71} .
\ ’ (y/\l)ﬂl e (y/\d>ud'

Here, we separate the first term ).~ from the general sum,; it is the constant term in Y,
which itself is a polynomial with respect to the jet variables y,. In this general formula, the
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only remaining unknowns are the nonnegative integer coefficients A1) #ard) ¢ N

and B,(f‘ 1A (maAd) = N In Section 3 below, we shall explain how we have discovered
their exact value.

At present, even if we are unable to devise their explicit expression, we may observe

that the value of the special integer coefficients Afﬁl’l) and Bf[fl’l) which are attached to

the monomials ct., y1, (y1)?, (y1)?, (y1)* and (y;)° are simple. Indeed, by inspecting the
first terms in the expressions of Y, Y, Y3, Y, and Y5, we of course recognize the
binomial coefficients. In general:

Lemma 2.19. Fork > 1,

t K K
Y){ = Tk :EKVf)\ A Xxnfkﬁ»l A—1 A
(2.20) Yor t 2 KA) Yoty <A - 1) v } )

+ [—&ys] (y1)" + remainder,
where the term remainder collects all remaining monomials in the pure jet variables.

In addition, let us remind what we have observed and used in a previous co-signed
work.

Lemma 2.21. ([(GM2003a], p. 536) For k > 4, nine among the monomials of Y ,, are of
the following general form:
Y. = Vor + [Cf Vonry — Xow| 1 + [CF V2 — Cp Xypn | yot

+ [C2 Y2y — C2 X ] Yz + [Ch Yy — C2 X2 | Y1+

+ [Ch V2 — & Xy ] 191 + [—C2 X Yoyt

+ D/y —C} XI] + [—C;H Xy} V1Y, + remainder,

(2.22)

where the term remainder denotes all the remaining monomials, and where CQ =

#'),/\, is a notation for the binomial coefficient which occupies less space in Latex

“equation mode” than the classical notation

K
(2.23) (/\> .

Now, we state directly the final theorem, without further inductive or intuitive informa-
tion.

Theorem 2.24. For k > 1, we have:

Kk+1

OEEES SEED SID SR S

d=1 1< <<A\g<k p12l,,pa2l padi+-+pgrg<et1

ol — Ny — e — 1
K- (k— M fard + 1) e Y i taghg g —
(2.25) P !~ Ol pag) y
K (K= A = = e £ 2) (A -+ paha)

D)t - - - (Ag)Pa g

. Xx"i_“lkl_“'_“d/\d""l y‘“‘1+'“+‘“‘d_1 (ykl)ul “e (yAd)H/d
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Once the correct theorem is formulated, its proof follows by accessible induction ar-
guments which will not be developed here. It is better to continue through and to ex-
amine thorougly the case of several variables, since it will help us considerably to ex-

plain how we discovered the exact values of the integer coefficients AlprA)-liara) g q

2.26. Verification and application. Before proceeding further, let us rapidly verify that
the above general formula (2.25) is correct by inspecting two instances extracted from
Y.

Firstly, the coefficient of (y;)3y3 in Y is obtained by putting x = 5, d = 2, \; = 1,
f1 = 3, Ao = 3 and py = 1 in the general formula (2.25), which yields:

5.4-3-2-1-6
{O_ (13 31 (3N 1! Xy?} = [-20 Xye] .-

This value is the same as in the original formula (2.10): confirmation.

Secondly, the coefficient of yl(y2)2 in Ysisobtainedby k =5, d=2, A\ =1, iy =1,
A2 = 2 and po = 2 in the general formula (2.25), which yields:

5-4-3-2-1 5-4-3-2-5
{(1!)1 T R CTIETRC) EP] X”’Q] =15 %p =75 Ayl

This value is the same as in the original formula (2.10); again: confirmation.
Finally, applying our general formula (2.25), we deduce the value of Y ¢ without having
to use Y 5 and the induction formulas (2.4), which shortens substantially the computations.
For the pleasure, we obtain:

(Y6 =Vu6 + [6 V05, — Xys| y1 + [15Vypay2 — 6 Xy, | (y1)>+

+[20 V8,8 — 15 Xpa,2] (41)° + [15 Yoy — 20 Xysys] (y1)*+

6 Voys — 15 X2 (91)” + [Vys — 6 Xyy5] (y1)° + [—X,s] (y1)"+
15 Yy, — 6 Xys | y2 + [60 Vysy2 — 45 Xy | y1y2+

90 V2,8 — 120 X2 | (y1)%y2 + [60 Vyya — 150 Xy2ys] (1) v+
15,5 — 90 Xppa] (y1) w2 + [—21 X5 ] (11) o+

45 V2,2 — 60 Xyay | (y2)? + [90 Vyys — 225 X2 ] w1 (y2)*+

45 Yyt — 270 Xy ] (y1)?(y2)* + [210 X ] (31)° (y2)*+

15 V,3 — 90 Xyy2| (y2) + [—105 X5 ] y1 (y2)>+

20 V3, — 15 Xya| Y3 4 [60 Vyzy2 — 80 Xz, | y1ys+

60 Vyys — 150 X2z (y1)%y3 + [20 Ve — 120 Xypn] (1) s+
—35X,4] (y1)"ys + [60 Vpy2 — 150 X2, | yoys+

60 Vs — 360 Xy2] v192ys + [—210 Xy (1) y2ys+

—105 X2 ] (y2)%y3 + [10 V2 — 60 Xy ] (y3)*+

—T0 X2 ] y1(y3)® + [15 Vazy — 20 Xys | ya+

30 Yoy — 75 X2, | y1ya + [15 Vs — 90 Xy 2] (1) yat
—35X,5] (y1)%ya + [15V,2 — 90 Xy | yoya+

—105 X2 | y1y2y4 + [—35 Xy ysya + [6 Yy — 15 Xy2] ys+

6,2 — 36 Xuy] y1ys + [—21 X,2] (41)%ys + [~21 X, ] yoys+

[Vy — 6 X, ys + [T X,] y16-

(2.27)

(2.28)

(2.29)

[ B B e T e B s T s T e T s T s T e T s T e T e B s T s B s B s B |

+ 4+ +++ + ++ +++++ + + + + +
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2.30. Deduction of the classical Faa di Bruno formula. Let z,y € K and let g = g(x),
f = f(y) be two C*>°-smooth functions K — K. Consider the composition h := f o g,
namely h(z) = f(g(z)). For A € N with A > 1, simply denote by g, the A-th derivative

g { and similarly for h,. Also, abbreviate f) := zy{~

By the classical formula for the derivative of a composite function, we have h; = f; g;.
Further computations provide the following list of subsequent derivatives of h:

(h1 = fig,
ho = fo(g1)® + f1 92,

= f3(91)’ +3 fagr 92+ f1 95,

= [1(91)* +6 f3(91)° 92 + 3 fo (92)* + 4 fo g1 95 + f1 94,
(91)

= f5(91)° +10 f1(g1)% g2 + 15 f3 (91)* g5 + 10 f3 91 (g2)*+
+10 f292 93 + 5 f291 94 + f1 95,

= fo(91)° +15 f5 (91)" g2 + 45 fa (91)* (92)* + 15 f3 (92)°+
+20 f1 (91)* g3 + 60 f3 91 92 93 + 10 fo (g3)* + 15 f3 (91) ga+

L +15 f2 9294+ 6 f291 95 + J1 g6-

Theorem 2.32. For every integer k > 1, the k-th derivative of the composite function
h = f o g may be expressed as an explicit polynomial in the partial derivatives of | and
of g having integer coefficients:

I SHED SHEED SHE S

2.31)

(2.33) d=1 1 <--<Ag<k 1 21,pma 21 paida+Fpg a=r
Al dntetiaf (dhg\" g™
(AD)E gl (Ag)ka pg! dyrattra \ da™ A

This is the classical Faa di Bruno formula. Interestingly, we observe that this formula
is included as a subpart of the general formula for Y, after a suitable translation. Indeed,
in the formulas for Y1, Yo, Y3, Y4, Y5, Y¢ and in the general sum for Y, pick only the
terms for which 1A\ + - - - + pgAg = k and drop &X', which yields:

(2.34) d=1 1M <<Ag<k p12l,pa2l pidi++pgra=r
K!
P Hd
|:/~L1!()\1!)M1 - Md!()\d!)ﬂd yy”1+"'+”d:| (y)\l) (y)\d)

The similarity between the two formulas (2.33) and (2.34) is now clearly visible.

The Faa di Bruno formula may be established by means of substitutions of power series
([F1969], p. 222), by means of the umbral calculus ([CS1996]), or by means of some
induction formulas, which we write for completeness. Define the differential operators
(2.35)

F —9208 + g1 (fz f)

0 0 0 0
F3 329287914‘938792‘?91 (fzaﬁ‘f‘fS)a
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Then we have

hy = F2(hy),

hsy = F3(hy),
(236) 3 (hs)

hy = FA(hy_1)

§3. SEVERAL INDEPENDENT VARIABLES AND ONE DEPENDENT VARIABLE

3.1. Simplified adapted notations. As announced after the statement of Theorem 2.24,
it is only after we have treated the case of several independent variables that we will
understand perfectly the general formula (2.25), valid in the case of one independent
variable and one dependent variable. We will discover massive formal computations,
exciting our computational intuition.

Thus, assume n > 1 and m = 1, let K € N with k > 1 and simply denote (instead
of (1.2)) the jet variables by:

(32) (l‘i; Ys Yiys Yiyjigy - - - 7%1,2‘2,---,%) .
Also, instead of (1.30), denote the x-th prolongation of a vector field by:

n_n za 2 -
E()_;X 8xi+y8y+ZY”(9yh+ Z Yma

i1,i9=1

11,7/2

(3.3)

The induction formulas are

/

Y,, = D} ( Z D;, (X*) ys,

(34) 11,02 =D Z D yzl,ka

Yil,iQ,...,iK = DZ (Yihig,...,infl) - Z Dzln (Xk) yil,iz,...,iﬁfl,k7

k=1

where the total differentiation operators D7 are defined as in (1.22), dropping the sums
>_5— and the indices j'.

3.5. Two instructing explicit computations. To begin with, let us compute Y,;,. With
D} = 8%1 + i, a%’ we have:

Y, = Z Dy, (X™) i,

k1=1

=V + Vy ¥, — Z X5 g = ) X Y Yk

k1=1 k1=1

(3.6)
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Searching for formal harmony and for coherence with the formula (2.6);, we must include
the term ), y;, inside the sum ) ;' _; [] yx,. Using the Kronecker symbol, we may write:

n

3.7) Vyvin = > 65V, un.

ki=1

Also, we may rewrite the last term of (3.6) with a double sum:

n

(3.8) D Ay = > [0 ARy,

k1=1 k1,k2=1

From now on and up to equation (3.39), we shall abbreviate any sum » ;_, from 1 to n
as ) .. Putting everything together, we get the final desired perfect expression of Y :

(3.9 Z1 =V, + Z 51@1 Xkl ykl + Z 5k‘1 )('k2 yklykT
k1,k2

This completes the first explicit computation.
The second one is about Y;, ;,. It becomes more delicate, because several algebraic
transformations must be achieved until the final satisfying formula is obtained. Our goal
is to present each step very carefully, explaining every tiny detail. Without such a care,
it would be impossible to claim that some of our subsequent computations, for which we
will not provide the intermediate steps, may be redone and verified. Consequently, we
will expose our rules of formal computation thoroughly.

Replacing the value of Y just obtained in the induction formula (3.4), and developing,

we may conduct the very first steps of the computation:

Yiii = D2 Z D <Xkl> Yi1 k1

0 0 0
(%h'{'yizay"i'kxlyimhaykl Vein +Z [5k1 Xkl]yk1+

k k
+ Z [_5i11 XZF} YkaYko | — Z [X 5+ Yio X;I} Yix k1
klka kl

(3.10)

- (85@2> o + Z [5k1 N ngl} DY [—521 Xﬂ Yk Yo | +

k1,k2

+ <y¢2 aay) Vi + Z [(Skl )(‘kl } Yk, + Z [—521?11 X;ﬁ} Yk Yky | +

k1,k2

(Z Yig k1 A ) (y i+ Z [5161 Xkl } Uk, + Z [—527?11 X?j%} yk‘lyk‘g) +
K1,k
+ Z [ Xkl} Yk ,i1 + Z [ } YiaYiq kr
k1
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k k k
Vit gia + Z [5 N zizy — millxi2:| Yy T Z |: 5 ! zQy] Yky Yko T

k1,k2
k k
+ yxily Yip + Z [6‘ Yy — Zly} Yea Yia Z [_5111 X;?ﬂ Ykn Uz Vi +
k1 k1,k2
k k i
3 - X [ s+ 5 [
K1,k k1,k2

+Z |: Xk1i|yk1 11+Z|: i|yi2yi1,/€1'
k1

Some explanations are needed about the computation of the last two terms of line 11, i.e.
about the passage from line 7 of (3.10) just above to line 11. We have to compute:

8 kl k‘g
(3.1D) <Z Yig k1 8yk1> (Z [—51-1 X, :|yk?1yk72> .
ks ki1 ko
This term is of the form
(3.12) > A 9 > By ko) Yk Vi
k 1 aykl k k 1,~R2 1 2 Y

where the terms By, i, are independent of the pure first jet variables y,.. By the rule of
Leibniz for the differentiation of a product, we may write

(Z Ak ajk) (Z [BklakQ]yklyk2) =

k1 k1,k2

3.13

-13) = Z [Bky k) Yk (Z Apy yk1 ) + Z [Brey ko] Yk (Z Apy 6y (Yk» )
k1,k2 k1,k2

= Z [Bkth} Yky Ak, + Z [Bkl,kz] Yky Ak, -
k1,ko ky,k2

This is how we have written line 11 of (3.10).

Next, the first term ), ¥, in line 10 of (3.10) is not in a suitable shape. For reasons
of harmony and coherence, we must insert it inside a sum of the form » _, [-] yx,. Hence,
using the Kronecker symbol, we transform:

(3.14) Voiry Ui = 3 (08 Vorry | -

k1

Also, we must “summify” the seven other terms, remaining in lines 10, 11 and 12
of (3.10). Sometimes, we use the symmetry y;, », = Yi,.i, Without mention. Similarly,
we get:

Z [(Skl yyy Zly} Yky Yip = Z |:6zk11 (5!“22 yyy — (5k2 szlly] Ui ko

k1 k1,k2
k1 ko — k1 k3 pko
Y [0 X ki = Y [—08 OB X Y Uk ks
k1,k2 k1,k2,k3

Z [5511 yy Xk1j| Yk i Z [6511 51122 yy 5k2 X:l} Yy ko

]{:1 k17k2
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D [ A vy = Y [208 X Yk Yk

(3.15) b fa oz
= > [0 0 A0 vk Yraas
k1,k2,ks3
Z [_5511 X;ﬂ Yk Yk iz = Z [_5511 5523 X;ﬂ Yhkr Yk ks »
k1,k2 k1,k2,k3
X ki =) [0  yk e,
k1 k1,k2
; [~ ] YiaYrsin = ; [—2X2] Wi Yhasin
| = Z (=00 0 )] Y-
k1,k2,k3

In the sequel, for products of Kronecker symbols, it will be convenient to adopt the fol-
lowing self-evident contracted notation:

(3.16) (5?11 (52’-“2 = oM*2. geperally 5?11 (5?22 o -55* rka, k*.

11,12 ) 115,22, T\

Re-inserting plainly these eight summified terms (3.14), (3.15) in the last expres-
sion (3.10) of Y;, ;, (lines 10, 11 and 12), we get:
3.17)

k
7,1,12 Z1112 + Z |:6 y Z2y 21 x12i| yk1 + Z |: 6 ! 22yi| yk1 ykg +
k1,ko
. 3 A 5
k k1,k k:
+ Z [‘51'21 Vpin yi| Yer T Z [51'11, i22 Vyy =057 X ny} Yk1Yks T
k1 @ k1,k2 E
k1,k k ,k k k
+ Z |: 6211 223 :| ykl kaykS + Z |:5Z11 Z22 (5 ’ X g :| ykl:kQ +
k1,k2,k3 E k1,k2 E
ko k k1,k
+ Z { 6Z12 Z23 Xk'li| Yk Uko ks + Z [ 5111 Z23 ){kz} Yk Ukoks  +
k1,k2,k3 @ k1,k2,k3 @
k: k k k
+ Z [—51.12 Xa:ll?} Yky ke T Z [ 121 “3 Xkﬂ Yy Yo s
k1,k2 E k1,k2,ks @

Next, we gather the underlined terms, ordering them according to their number. This
yields 6 collections of sums of monomials in the pure jet variables:

_ k1 k1 ) k1
Yil,ig = 213312 + Z [5 zi2y 51’2 yxlly - Xxilzi2:| Yk, +

+ Z [5511 7114322 yyy - 5k1 sz 5k2 ‘Xkl } Yy Yo T

22y ’Lly
k1,k2
k1,k
(3.18) + > { Oi iy X’ﬂ Yky Yo Yks +
k1,k2,ks
+ Z [57{? 77{622 5k2 Xkl 5k2 Xkl } Yk, k2+
k1,k2

N Z [ 5,1@’]@3 Xkl . 5k1,k3 sz _5k17k3 X’Q} Yk Yho ki3 -

11,12 11,12 12,11
k1,k2,ks



72 JOEL MERKER

To attain the real perfect harmony, this last expression has still to be worked out a little
bit.

Lemma 3.19. The final expression of Y, ;, is as follows:
( Yil,iz = 11112 + Z 5k1 ZQ?J + 5521 yﬂﬁily o Xk211x12:| yk1+

- Z [5511’22 Vyy — 00 Xf2 — o Xt ] Yk Yko T

zi2y zily
k1,k2
k1,k
(320) + Z [ 5211 122 Xk?)} Yk yk2yk3+
k1,k2,ks
+y [55?7522 gl ke g X;ﬂ Yk o+
k1,k2

n Z [ 5k1,/€2 Xk’?) (5k3’k1 XkQ 5’627]% Xk1:| Yk1 Yko ks -

11,12 11,12 11,12
\ k1,k2,ks

Proof. As promised, we explain every tiny detail.

The first lines of (3.18) and of (3.20) are exactly the same. For the transformations
of terms in the second, in the third and in the fourth lines, we use the following device.
Let T4, », be an indexed quantity which is symmetric: Yy, x, = T, x,. Let A, , be an
arbitrary indexed quantity. Then obviously:

(3.21) D Ak Those = D Aoy Voo

k:1 7k‘2 kl 7k52

Similar relations hold with a quantity T;, ;, ;. which is symmetric with respect to its A
indices. Consequently, in the second, in the third and in the fourth lines of (3.18), we may
permute freely certain indices in some of the terms inside the brackets. This yields the
passage from lines 2, 3 and 4 of (3.18) to lines 2, 3 and 4 of (3.20).

It remains to explain how we pass from the fifth (last) line of (3.18) to the fifth (last) line
of (3.20). The bracket in the fifth line of (3.18) contains three terms: [—77 — Ty — T3].
The term 73 involves the product 5f . f °, which we rewrite as 521“ 3’f ', in order that 7; appears
before i,. Then, we rewrite the three terms in the new order [—T5 — T3 — T3], which
yields:

(3.22) Z [ 6k1,k3 X]CQ 5k3,k1 sz 5k2,k3 Xkl Yky ko s -

11,12 i1,142 i1,142
k1,k2,k3

It remains to observe that we can permute ky and k3 in the first term —75, which yields
the last line of (3.20). The detailed proof is complete. UJ

3.23. Final perfect expression of Y, ;, ;.. Thanks to similar (longer) computations, we
have obtained an expression of Y

ir.isis Which we consider to be in final harmonious



LIE SYMMETRIES AND CR GEOMETRY 73

shape. Without copying the intermediate steps, let us write down the result. The com-
ments which are necessary to read it and to interpret it start just below.

— § kl ki) ki~ k1
Yil,iQ,i3 - ’1,7;’2m13 + |:5 ’Q;U’Sy + 5@'2 ygﬂlg}lSy + 51'3 ygjzlgj’2y X L1x12$23:| yk1+

* [1111223}23?424_51 C Ytz + 03,71 Yainy2—

13,11 12,13
k1,k2
_ k‘1 k}z k:l k’l k?2
51'1 zi2zi3y 5 le"3y 61'3 Xthigy} Yk Yk +
§ : k17k27k3 k1,k2 k3 k1,k2 k3 k1,k2

+ [ i1,12,13 y Z171'2 Xxia‘y? - 5i1,i3 Xxi2y2 B 51’271'3 X% zily2 Yk Yk Yks+

k1,k2,ks

z : k1,k2,k3 ks

+ |: 6Z1,Z2,Z3 X ykl ka ykgyk4+

k1,k2,k3,ka

kl,k‘2 k1,k2 k1,k2
+Z [11%232133/ 61321))121/ +9; Vairy—

19,13
k1,k2
k1 ko k1 ypka k1 ypko
6 X 2 213 6 X 1 i3 6 X 1 iz yk‘l,kg—’_
k‘l,kQ,k‘s k3,k1,k2 k27k‘3,k1
(3 24) + Z |: 11,12,13 y + é-Zl 12,13 y + 11,12,13 y
’ k1,k2,ks
k1,ko ks k3,k1 ko ko,k3 k1 .
511,12 X xi3y 621,22 i3y 511,12 i3y
_ skike ks skski ke ckoks k1
511 is ¥, zi2y 611 is X, zi2y 5@1 is ¥, zizy
k1,k2 ks k3,k1 ko k2,k3 k1
5%2 i3 X ’Lly 622 i3 X 7-1y 512 i3 X Zlyi| yklka,kS—f_
k1,k2,k3 ko ,ks3,k1 k3,k2,k1
+ Z [ 511,l2 13 Xy 611 12,13 Xy 621 12,13 Xy2
k1,k2,k3,kq
k3,k4,k1 ko k3,k1,k4 ko k1,k3,k4 ko
521 12,13 X - 6z1 12,13 X - 511 12,13 X 2} yklyk2yk37k4+
k1,k2,k3 ka,k3,k1 ok k3,k1,k2 kg
+ Z {_5i1,i2,i3 Xy (511,12,13 Xy 621722713 Xy ]ykl,k?yk?wk‘l—i_
k1,k2,k3,kq
j : k:1,k2,k‘3 k1,k2 ks k1,k2 k3 k1,k2 ks
+ |: i1,1%92,13 yy 521 19 Xx 67,1 i3 X 5%2 i3 Xx yk17k27k3+
k1,k2,k3
k1,k2,ks kg kq,k1,k2 ks k3,ka,k1 ko ko,k3,ka k1
+ Z |:_57,1,7,2,7,3 X - 511 ’LQ 23 X - 511 ’Lz ’L3 X - 511 ’LQ 13 X yklyk27k3yk4'
k1,k2,k3,ka

3.25. Comments, analysis and induction. First of all, by comparing this expression
of Y, ;,.i, with the expression (2.8) of Y3, we easily guess a part of the (inductional)
dictionary beween the cases n = 1 and the case n > 1. For instance, the three monomials
[-](y1)3, [[] y1y2 and [-] (y1)? y2 in Y3 are replaced in Y, ;, ;, by the following three sums:

3260 > [ Yk Yko ks, Do Hukthaks  and D> [ yk UkaYhs o
k1,ka,k3 k1,ka,k3 k1,k2,k3 k4

Similar formal correspondences may be observed for all the monomials of Y, Y,,, of

Yo, Y i, andof Y3, Y, Generally and inductively speaking, the monomial

11,82 11,12,13

(3.27) [T (ua)™ - (ua)™

appearing in the expression (2.25) of Y, should be replaced by a certain multiple sum
generalizing (3.26). However, it is necessary to think, to pause and to search for an
appropriate formalism before writing down the desired multiple sum.
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The jet variable y,, should be replaced by a jet variable corresponding to a A;-th partial
derivative, say Yk, ks, o where kq,...,k\, = 1,...,n. For the moment, to simplify
the discussion, we leave out the presence of a sum of the form Zkl k. - The p1-th

yoeking

o
power (yx,)"" should be replaced nor by (ykl’,._,%) 1, but by a product of p; different

jet variables Yk, hr, of length A, with all indices k., = 1,...,n being distinct. This
rule may be confirmed by inspecting the expressions of Y;,, of Y;, ;, and of Y, ;, ;.. So
Yk, kr, should be developed as a product of the form

(3.28) Ykt ookng Yhagstsekan, * " Yh(uy—1ag 4 10okugag 0
where
(329) klv"'7k>\17"'7kul>\1:17""n'

Consider now the product (yx,)"" (y»,)"*. How should it develope in the case of several
independent variables? For instance, in the expression of Y, ;, ;., we have developed the
product (y1)2 Y2 AS Yk, YkyUks k- Lhus, a reasonable proposal of formalism would be that
the product (yx, )" (y»,)"* should be developed as a product of the form

Yki,nkxy, Ykaystookany =7 Yk 1)y +10kuga
(330) 1 1 1 (11 1 H1A1
ykul)\1+l7"'7ku1>\1+>\2 e ykul)\l+(p,271))\2+17"'7kM1A1+;L2/\27
where
(331) kl, ey k’/\l, ey kulAU ey kM1A1+M2A2 = 1, o, n.

However, when trying to write down the development of the general monomial
(ya)" (ynn)™ -+ - (ya,)", we would obtain the complicated product

Yktsonkny Ykagv1sokang 777 Yh(u —1)a; 4100Kug A
Ykuing1okuingong * 0 YRy ag 4 (ug—1ag 10K A +aa o

(3.32) e
Ykuing+tugoidami+tmoRui b odbug_ dao1+3g

U yk“l>‘1+'”+/"‘d71)‘d71+(/"‘d71))‘d+1’”'7kul>‘l+”‘+”dAd *

Essentially, this product is still readable. However, in it, some of the integers k, have a
too long index «, often involving a sum. Such a length of a would be very inconvenient

in writing down and in reading the general Kronecker symbols (5f v b which should

Tyevnenn 5N

appear in the final expression of Y, ;.. One should read in advance Theorem 3.73

K

below to observe the presence of such multiple Kronecker symbols. Consequently, for
a=1,..., 1A, ..., A+ -+ pgAg, we have to denote the indices k., differently.
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Notational Convention 3.33. We denote d collection of 114 groups of A\q (a priori distinct)
integers ko, = 1,...,n by

51:1:17 BRI kl:l:/\lj cety kl:,m:l; cet kl:,ul:)\p
Vv Vo
)\1 >\1
1
k2:1:17 R k2:1:)\27 ey kQ:uzzlv ey k?:ug:)\zu
NS ~~ >y ~~ g
)\2 )\2
(3.34) ~ ~ 4
H2
kdll? "7kd1)\d7 7kd:,ud17 7kd,ud/\d
vV vV
Ad Ad
~ vV
B

Correspondingly, we identify the set
(3.35) {1,000 A0, e A, e S HIAL F Ao, ... JHAAL + oo 4 - gAg )
of all integers o from 1 to jiy A1 + 1o + - - - + g \g with the following specific set

(3.36) {111, LAy, LA, e, 20 et Aoy oy A gt Ag )
_}:_/
H1A1
#1/\11#2&

1AL Fp2 Ao+ g g
written in a lexicographic way which emphasizes clearly the subdivision in d collections
of g groups of Ay integers.

With this notation at hand, we see that the development, in several independent vari-
ables, of the general monomial (yy,)"" - - - (y»,)"?, may be written as follows:

(3'37) ykl:l:l’“-vkl:l:)\l e yk‘l:ulrlz"'vkl:ul:)\l e ykd:l:lv---’kdzlz)\d ...... ykd:ud:h--'vkd:ud:/\d'

Formally speaking, this expression is better than (3.32). Using product symbols, we may
even write it under the slightly more compact form

(3'38) H ykl:ulzlan-,kl:yl:)\l T H ykd:udzlrnzkd:ud:)\d °
1< < 1<vg<pa
Now that we have translated the monomial, we may add all the summation symbols:
the general expression of Y, (which generalizes our three previous examples (3.26)) will
be of the form:
(3.39)
r+1

Yo=Y Y ) 2

d=1 1M <<Ag<k p12l,,pmg21 pidi+FpgAg<s+1

n n n n

kl:l:lw--akl:l:Al:l kl:ﬂlih""kl:lﬂl:)\l:l kd:l:l:-~~7kd:1:)\d:1 kd:ud:17~~~7kd:ud:>\d:1
2 o o
['] | | ykl:lllilz--'vkl:ul:)\l | | ykd:ud:h"':kd:l/d:)\d'

1< <m 1<va<pa

From now on, up to the end of the article, to be very precise, we will restitute the bounds
>, of all the previously abbreviated sums »_,. This is justified by the fact that,
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since we shall deal in Section 5 below simultaneously with several independent variables
(x',...,2") and with several dependent variables (3!, ..., y™), we shall encounter sums

>~ not to be confused with sums .

3.40. Combinatorics of the Kronecker symbols. Our next task is to determine what
appears inside the brackets [?] of the above equation. We will treat this rather delicate
question very progressively. Inductively, we have to guess how we may pass from the
bracketed term of (2.25), namely from

K(’%_Ml)\l__ud)\d_'_l)y B
(ADA g - (Agh)ka pug! gRTHIALT A gkt
(3.41) ke (k= A — - — pradag +2) (A + - + /Ld)\d).
()\1!)“1 ILLl' s ()\d!)“d [Ld|
X A =g gt yl‘1+‘“+l‘d71j| )

to the corresponding (still unknown) bracketed term [?].

First of all, we examine the following term, extracted from the complete expression of
Y, ip,i; (first line of (3.24)):
(3.42) Z [5511 Vaizaisy + 5521 Vriraisy + 5531 Vainging = szillx@:pi?’} Yk -

ki1=1

Here, the coefficient [3 Vazy — X,3] of the monomial y; in Y3 is replaced by the above
bracketed terms.

Let us precisely analyze the combinatorics. Here, X3 is replaced by X kll iy is» Where

. . . . . . z xz . T

the lower indices 41, 72, i3 come from Y, ;, ;. and where the upper index k; is the sum-
mation index. Also, the integer 3 in 3 )V,2, is replaced by a sum of exactly three terms,
each involving a single Kronecker symbol 6%, in which the lower index is always an index
1 =11, 12, 13 and in which the upper index is always equal to the summation index k. By

the way, more generally, we immediately observe that all the successive positive integers
(3.43) 1,3,1,3,3,1,3,1,3,3,3,9,6,3,1,3,4

appearing in the formula (2.8) for Y3 are replaced, in the formula (3.24) for Y;, ;, ;,, by
sums of exactly the same number of terms involving Kronecker symbols. This observation
will be a precious guide. Finally, in the symbol 5?1 ,if 7 is chosen among the set {iy, is, i3},
for instance if ¢ = 4, it follows that the development of )2, necessarily involves the
remaining indices, for instance ), i, ,is,. Since there are three choices for i = iy, i, i3, we
recover the number 3.

Next, comparing [V, — 2 X,,] (y1)? with the term

’i3y.

(3.44) 3 [5“ Vyy — 68 XKL — XM Ly,

k1,ka=1
extracted from the complete expression of Y;, ;, (second line of (3.18)), we learn and we
guess that the number of Kronecker symbols before ),,s must be equal to the number of
indices k, minus ~. This rule is confirmed by examining the term (second and third line
of (3.24))

E ’ k1,k2 ) k1,k2 ) k1,k2 )
[5i17i2 yng,yz + 51'371'1 y9012y2 + 51'271'3 yz”?ﬁ_
(3.45) ki kz
k1 ko

23y

k1 ko

i3y

k1 ko
. (23 Xmilxi2y] yklyk27
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developing [3 V.2 — 3 X,2,] (v1)2.
Also, we may examine the following term

n

E ' k1,k2 k1,k2 o k1,k2 o
|:5i17i2 yﬂﬁii‘xi‘ly? + 51'171'3 yﬂﬁz?ﬂf“‘?ﬂ + 51'171'4 y95129313y2+

k1,ka=1
(346) —|—5Zl,€217’f32 yxilxi4y2 + 5;‘;17752 yxilxing + 5217752 yxil;ﬂ?y?_
_5511 Xj}%i?’x”y N 5521 Xflll zizaisy 51}'21 Xflﬁ wizgiay
—05 X i giay | Yka Yk

extracted from Y, ;, ;, ;, and developing [6 V2,2 — 4 X,3,] (y1)?. We would like to men-
tion that we have not written the complete expression of Y. because it would cover
two and a half printed pages.

By inspecting the way how the indices are permuted in the multiple Kronecker symbols
of the first two lines of this expression (3.46), we observe that the six terms correspond
exactly to the six possible choices of two complementary ordered couples of integers in
the set {1, 2, 3,4}, namely

11,82,93,%4

{1,2} U {3, 4}, {1,3} U{2,4}, {1,4} U{2,3},

(3.47) (2.3)u{L4}, {24}u{1,3}, {3,4}u{12}.

At this point, we start to devise the general combinatorics. Before proceeding further, we
need some notation.

3.48. Permutation groups. For every p € N with p > 1, we denote by &,, the full
permutation group of the set {1,2,...,p — 1, p}. Its cardinal equals p!. The letters o and
7 will be used to denote an element of S,,. If p > 2, and if ¢ € N satisfies 1 < ¢ <p—1,
we denote by G the subset of permutations o € &, satisfying the two collections of
inequalities

(349 o(l)<o(2)<---<0a(q) and olg+1)<o(qg+2)<---<a(p).

. o p!
The cardinal of & equals C = Tt
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Lemma 3.50. For k > 1, the development of (2.20) to several independent variables

(... ") is:
. _
Y’il,’iQ,...77;N = yxilxiQU.xin + Z Z 521(1) yxif(z)mz’if(m)y - XfillmiQ_,_xiK Y, +
ki=1 | re&L |
- k k k k -
+ kl%ZI TGZG% (51':(’1)’2-72(2) yxiT(g)”wiT(ﬁ)zﬁ - TEZG}{ (52-:(1) chi@)u-xiT(”)y Yk Ykeo T

ki, ka2, k3 ) ) .
+ Z Z 5i7(1)7ir(2)7i7(3) yx17(4)---$17(“)y3
ki,k2.ks=1 | 7€&}
(3.51)

_ k17 ka xks
Z 1r(1), 7,7_(2) 7(3) T(R) y2 yklykzyk3+
TEGZ

n
I _ P K
+ Z 6i1:"~7 i yyﬁ Z 5"’7’(1)7"'71'7(/@71) XziT(K)yK71 ykl yk“—i_
k‘l,...,kKZI 7662*1

n
K1,k 1ok .
+ Z [_51‘11,’...,’% Xy"‘+1:| Uky *** Yk Ykon T remainder.
kla---vkmvkn%—l:l
Here, the term remainder collects all remaining monomials in the pure jet variables
Yka,....kx

3.52. Continuation. Thus, we have devised how the part of Y;, _;_ which involves only
the jet variables v, must be written. To proceed further, we shall examine the following
term, extracted from Y (lines 12 and 13 of (3.24))

11,02,13
k1,k2,ks ks k2,k3,k1 qrka k3,ka,k1 ks
2 : [ 611712 i3 X 611 12,13 X 57«1,7«2 i3 X
(3.53) k1,k2,k3,kq

k3,k4,k1 ke k3.k1,ka ko ki1,k3,ka ko
611 12 23 X 521 22 23 X 511 ’52 ’53 X yklyk2yk37k47

which developes the term [—6 X,2] (1)?ys of Y3 (third line of (2.8)). During the compu-
tation which led us to the final expression (3.24), we organized the formula in order that,
in the six Kronecker symbols, the lower indices 1, io, 73 are all written in the same order.
But then, what is the rule for the appearance of the four upper indices ki, ko, k3, k4?

In April 2001, we discovered the rule by inspecting both (3.53) and the following com-
plicated term, extracted from the complete expression of Y, ;, i, ;, Written in one of our
manuscripts:

k17k27k3 ka,k1,k3 _ ka,k3,k1 )
z : [ i1, 12, i3 Y ziay? 511 i2, i3 yﬂﬁl‘lyQ + 511 i2, 13 yﬁv'4y2+

k1,k2,k3
055 Vatage + 052708 Vaiaye + 017505 Vasayet
(3.54) + OIS Y e+ OIS Y s + 0N Yy ot
00558 Ve + 00 a0 Ve
. (Skzl,kz ng 6k2,k1 Xks 5’“271‘33 ki —

i1, 12 “Tzi3xidy i1, 12 “Tzi3xiay i1, %2 “Txi3yiay
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ki,k2 k3 kak1 yk3 _ skoks vk _
5z1 i3 X xi2atdy - 611 i3 X xi2gty 611 i3 “rriagiay
k1,k2 k3 _ skok1 ks _ skoks vk _
511 iq X 7~21-13y 521 Q4 X Z2x13y 61,1 14 i2m¢3y
_ skika ks _ skok1 ks _ ckoks
512 i3 X 7'1.7:7‘4:1/ 612 i3 X 111‘7'4:1! 512 i3 Z1ac””4y
k1,k2 ks ko,k1 ks ko,k3 -k
522 i4 X i1 xi3y 512 4 X i zi3y 512 ig Tpitgisy
k1,k2 ka2,k1 k3 ka,k3
513, i4 11 zizy Vi3, da Tpiigizy | i3, da Cpiigizy Yk1 Yko ks -

This sum developes the term [12Y,,2 — 18 X2, ] y1y» of Y3 (third line of (2.9)). Let us
explain what are the formal rules.

In the bracketed terms of (3.53), there are no permutation of the indices i1, io, 23, but
there is a certain unknown subset of all the permutations of the four indices k1, ko, k3, ky4.
In the bracketed terms of (3.54), two combinatorics are present:

e there are some permutations of the indices 71, 72, 3, 74 and
e there are some permutations of the indices ky, ko, k3.

Here, the permutations of the indices i1, 79, 73, 74 are easily guessed, since they are the
same as the permutations which were introduced in §3.48 above. Indeed, in the first four
lines of (3.54), we see the four decompositions

(355) {ilai27i3}u{i4}a {i17i27i4}u{i3}7 {7;172.377;4}U{7;2}7 {i27i3ai4}u{il}7
of the set {i1, 72,13, 74}, and in the last six lines of (3.54), we see the six decompositions

{i1, 12} U {is,ia}, {i1,i3} U {ia, 14}, {i1, 14} U {ia, i3},
{i27 Z3} U {ila i4}7 {i27 Z4} U {ila Z.3}7 {i37 7’4} U {ila i?}a

so that (3.54) may be written under the form

(3.56)

3.57)
T(l): T(2)» 7'(3) 7(1)7 7'(2) ‘r(d)
Z Z Z r(1)str(2)10r(3) Vi x'T(4) g2 Z Z ir(1)sir(2) @) gty Yk1 Ykeo k3>
k1,k2,k3 | Te&3 o€? TEG? 0€?

where in the two above sums ) | __,, the letter o denotes a permutation of the set {1,2,3}
and where the sign ? refers to two (still unknown) subset of the full permutation group Gs;.
The only remaining question is to determine how the indices k. are permuted in (3.53)
and in (3.54).

The answer may be guessed by looking at the permutations of the set {k, ko, k3, k4}
which stabilize the monomial Yy, Y, Yk, .k, 10 (3.53): we clearly have the following four
symmetry relations between monomials:

(3.58) Yhky Yo Yk ks = YkoUky Yks ks = Yky YkoYka ks = YkoYky Yk ks

and nothing more. Then the number 6 of bracketed terms in (3.53) is exactly equal to the
cardinal 24 = 4! of the full permutation group of the set {k;, ko, k3, k4} divided by the
number 4 of these symmetry relations. The set of permutations o of {1, 2, 3,4} satisfying
these symmetry relations

(3.59) Yk 1) Yko 2y Yko(3) ko) = Yk1YkaYks ks

1),(1,2)

consitutes a subgroup of &4 which we will denote by 5’) b . Furthermore, the coset

(3.60) (2 1),(1,2) — &4/} (2,1),(1,2)
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(1233) (ea1d) (s214)
(2i72) (:19:2) (13iz)

which exactly appear as the permutations of the upper indices of our example (3.53). Of
course, the question arises whether the choice of such six representatives in the quotient
S4/6 1 s legitimate.

Fortunately, we observe that after conjugation by any permutation o € 55512’1)’(1’2), we
do not perturb any of the six terms of (3.53), for instance the third term of (3.53) is not
perturbed, as shown by the following computation

0'(3)’ 0'(2)7 o(1) 0'(4) _
Z [ 511, i3, i3 X :| Yk Yko Yk ks =
k1,k2,k3,ka

_ ks3,ka,k1 o(4)
(3_62) - i ]{; i |: 521, i9, 13 Xy :| yk‘ -1 1>yk‘ 71(2>yk‘ 71(3>7k —1(4)
1,R2,R3,R4

_ ks,ka,k1 yKo(4)
- Z |: 611, i2, i3 ‘Xy :| Yk Yko Yks ky
k1,k2,k3,ka

possesses the six representatives

(3.61)

=N NN
=N W N
w = W
W N NN
=W =W

thanks to the symmetry (3.59). Thus, as expected, the choice of 6 arbitrary representatives
o€ 55‘2’1)’(1’2) in the bracketed terms of (3.53) is free. In conclusion, we have shown
that (3.53) may be written under the form:

(3.63) Z — Z 5“"7“)’@2”,(2)’;(3)X PN Y Yoo Y

k1,k2,k3,ka 063(2 ,1),(1,2)

This rule is confirmed by inspecting (3.54) (as well as all the other terms of Y,

11,12,13
and of Y}, ;,.i,.,). Indeed, the permutations o of the set {ky, k2, k3} which stabilize the

monomial Yy, Y, k, consist just of the identity permutation and the transposition of £k, and
k3. The coset &3/ 5’_):(31’1)’(1’2) has the three representatives

123 123 123
(3-64) (123)’ (213)’ (231)’

which appear in the upper index position of each of the ten lines of (3.54). It follows
that (3.54) may be written under the form

(r(l)» (7(2)7 o(3)
2 : § : z : 6 r(1)sbr(2)107(3) y @) y2

ki,k2ks | re&d 06&(31,1)7(172)

k k k
o ! 0(1)9‘ o(2) X ,0-(3) )
Z Z 527'(1)1’57'(2) 337'7'(3) xl"'(‘l)y ykl yk?’k?’.

oEG? Te&(;,l),ug)

(3.65)

3.66. General complete expression of Y, ;. As in the incomplete expression (3.39)
of Y;, ., considerintegers 1 < A\ < --- < Ag < kandpy > 1,..., 14 > 1 satisfying
A+ A pghg < k+1. By 44,5, We denote the subgroup of permutations 7 €
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S, A+t D, that leave unchanged the general monomial (3.38), namely that satisfy

H yko‘(l:ulzl)7~~~7ko'(1:1/1:)\1) T H yk(r(d:udzl)a~~~7ka'(d:ud:)\d) =

ISvism 1<vaspa
(3.67)
H ykl:ul:lu-n)klzul:)\l e H ykd:ud:lr-wkd:l/d:)\d :
I<rigm 1<va<pa
The structure of this group may be described as follows. For every e = 1,...,d, an

arbitrary permutation o of the set

(3.68) {g: i1, o enli)dg e 2il, o en 20,0 € el et het A}

Ae Ae Ae

J/

which leaves unchanged the monomial

(3'69) H yko’(e ve:il)sees cf eive: )\e) H yke veilnKewe:e *

1<ve<pte 1Sve < e
uniquely decomposes as the composition of

e i arbitrary permutations of the 1. groups of A, integers {e:v.:1,...,e:v: A},
of total cardinal (\.!)#<;
e an arbitrary permutation between these . groups, of total cardinal p.!.

Consequently
(3.70) Card (SIS ) = it - pal (Aal)
Finally, define the coset
(37D UM 2 @,/ DU )

with

Card (3 1AL, ’(“d»’\d)> _ Card (Sppnttpara)

pALH -t Had Card ( (#1,21) 5005 (115 M)
BP1AL+-tpaAd

_ (i d + -+ faAq)!
pat (A - gl (Ag!)ra

(3.72)

In conclusion, by means of this formalism, we may write down the complete generaliza-
tion of Theorem 2.24 to several independent variables.
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Theorem 3.73. For every k > 1 and for every choice of k indices i1, ... ,1, in the set
{1,2,...,n}, the general expression of Y;, ;. is as follows:
3.74)

K+1

Yl‘h---ﬂk = ~)}:I:"1~~-z”‘f’i + Z Z Z Z

d=1 1 <<k 2l pma2l i+ +pgAg <+l

n n n n
k1:1:17~~~1k1:1:/\1:1 kl:ul:l’“wkl:ul:)\l:l kd:1:1:~'~7kd:1:>\d:1 kd:udzlvn'vkd:ud:)\d:l

S(”l A1) s (g Ag) reeﬁl)‘ﬁ'”*“d’\d

B1AL+ - FRgAg

P
ko(l:l:l)v"'v o'(l:ul:)\1)7"'7ko(dzpd:)\d) 8N Hit HaAdtpt +#dy

Tr(1)sebr (g M) 30 b7 (g A+ g Ag) 8xi7(;t1A1+-"+HdAd+1> . ,axif(n) (ay)u1+---+ud -

- D

(B1,21)5--5(Bg A g) AL+ tprghg—1
g3 1 Aoy TEGS,

— e Kotdon .-
cr(l 1: 1)7 ) 0'(1 T )\1)’ ) G(d nagiNg—1) 8H N1>\1 ,Ud)\d“l‘/ll“l‘ +MdX o(dipgirg)

7'(1)» ’T(:“‘l’\l)’ 77'(;1.1/\1+ Fpgrg—1) 8x (B A1+ Fugrg) . 8.%'1'7-(“) (8y)ul+...+ud_1

H ykl:ulzla---vkl:ul:/\l e H ykd:l/d:la---akd:ud:)\d :

IRSZ N1 1Svaspd

Since the fundamental monomials appearing in the last line of (3.74) just above are not
independent of each other, this formula has still to be modified a little bit. We refer to
Section 6 for details.

3.75. Deduction of a multivariate Faa di Bruno formula. Let n € N with n > 1, let

v = (z',...,2") € K", let g = g(z',...,2") be a C*-smooth function from K" to
K, let y € Kandlet f = f(y) be a C* function from K to K. The goal is to obtain
an explicit formula for the partial derivatives of the composition h := f o g, namely
h(z',... z") = f(g(xl, ...,2™)). For A\ € Nwith A > 1 and for arbitrary indices
i1,...,0x = 1,...,n, we shall abbreviate the partial derivative W by gi,,..:, and
similarly for m1 . The derlvatlve { will be abbreviated by fi.
Appying the cham rule, we may compute.
=h [97,1} )
hivio = f219ir 9i] + f119i,i0] 5
Piysissis = [3[9ir Giz Gis] + 12 [9ir Ginsis + Gis Girsis T Gis Ginia] + f1[9ir inis] »
inyinsisia = 4190y Gis Gis Gia) + [3 [Gin Gis Ginsia + Gis Gir Ginyia T Gin Gia Gigyiat

(3.76)
+Gi1 Gia Yinis T Gin Gia Giris + Gis Gia Giria] +

+ f2 (i1 i Gisis  Gir iz Gingia + Giria Ginsis) +
+ f29ir Ginsissia T+ Giz Gir sisiia + Gis Ginsinsia + Gia Gin jinsis) T
+ f1 [Gin inisia) -

Introducing the derivations

= 3 i <f2 8f>

kll

Z ki o + Z Ik1 ko, Er

3.77) ) )
_l’_
k1=1 k1 k1,k2=1 9k ’k2 <f2 f f3 af >
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n

0 0

F = ki + k1 k +-F
’ k,z_l o ag/ﬁ k kz 1 phat ag k1,k2

1= 1,R2

- )
D SR T —
k1,..,ka_1=1 e ka—1

0 0
+ i tfsmm ot :
(g gt g
we observe that the following induction relations hold:
hil,i2 - F2 (h )

hi 12,1
(3.78) L

=B (h

h

11,82,000,80 i17i27~--’i>\71) :

To obtain the explicit version of the Faa di Bruno in the case of several variables
(xl, ...,x™) and one variable y, it suffices to extract from the expression of Y;, _,_ pro-
vided by Theorem 3.73 only the terms corresponding to (1 Ay + - - - + pugA\g = K, dropping
all the X terms. After some simplifications and after a translation by means of an elemen-

tary dictionary, we obtain a statement.

Theorem 3.79. For every integer k > 1 and for every choice of indices i1, . . . , i, in the set
{1,2,...,n}, the k-th partial derivative of the composite function h = h(zt,... 2") =
flg(xt, ... ™)) with respect to the variables x**, . . ., '~ may be expressed as an explicit

polynomial depending on the derivatives of f, on the partial derivatives of g and having
integer coefficients:

g Z 2. 2. 2

d=1 1< <-<Ag<k p121,,00 21 pi A+ pgrg=k

Mg
(3'80) Z H alria'(lzul:l) ... axio'(lzulz)\l) ot

UES(M A1) (kg hg) 1< <

Mg
H 8$ia(d:l/d:1) e axia(d:uds:)\d)

1<va<pa

du1+"'+udf
dyrit-tha

In this formula, the coset F#1 ) (Ha:Ad)

the identification:

(3.81) {1,k ={1:1:1, . Loy A, RS B N SN TR ED ¥

was defined in equation (3.71); we have made

and also, for the sake of clarity, we have restituted the complete (not abbreviated) notation
for the (partial) derivatives of f and of g.
We refer to Section 6 for the final writing of the above formula (3.80).

§4. ONE INDEPENDENT VARIABLE AND SEVERAL DEPENDENT VARIABLES

4.1. Simplified adapted notations. Assumen = land m > 1,let xk € Nwithxk > 1
and simply denote the jet variables by (instead of (1.2)):

(4.2) (2,9 vl vds oY) € T
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Instead of (1.30), denote the «-th prolongation of a vector field by:

¢

0 ;0 N, 0 = 0

LO=X_—4) YV —+> Y —+> Y]—+
or Y o = 8y1 — oyl

4.3) " ” ”

\

The induction formulas are:

(4.4)

where the total differentiation operators D* are denoted by (instead of (1.22)):

0 = 0 0 0
A l l l
4.5) D" = :L‘+E y1?+g y27+...+§ y)‘W'
=1 ¢ =1 0 1 =1 A-1

Applying the definitions in the first two lines of (4.4), we compute, we simplify and we
organize the results in a harmonious way, using in an essential way the Kronecker symbol.
Here, the computations are more elementary than the computations of Y;, and of Y, ;,
achieved thoroughly in the previous Section 3, so that we do not provide a Latex track of
the details. Firstly and secondly:

(

m m
=Vi+) [y;ll — & Xx] iy [—5{1 Xyb} Yyl

l1=1 l1,la=1
m . . m . .
L R AL Y FY IR S N AR 2 A PP
(46) =1 l1,la=1

j 1 lo 1 ] i l
+ Z [—(5?1 Xybyzg} yhylzyls 4 Z [y;ll — (5;1 2Xx] b+
l1

l1,12713

+ Z [ 5112\,’12 2Xyzl} Yyl
l1,l2=1

Thirdly:

m m
Y=+ 30 30 =6 X+ 0 [307 0 — o3, | bl

li=1 I1,la=1

j j Iy, 1o, l:
(4.7) + D [yf/llyuyzg —5513%@,12@,13} yryryr +

l1,l2,l3

m
D [0 Ry | ol 3 (307, - o 3| b+

l1,l2,l3,l4 l1=1
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m
' ‘ j Lol
Y By — B B Xg — 8,6 X | iule
l1,l2=1

m m
] ] l1, 12,1 j Iy, 0

+ Z |:_5l]1 3 Xyl2y13 - (5‘;3 3 XyllyZZ:| yll y12 y23 + Z |:_5l]3 3 Xy12:| y21 y22+

l17l27l3:1 l1,l2:1

m m
. . I . . Lol

+3 [y;,l — 5 32{4 Wy [—5{1 Xy — 0] 32@11] Yyl

li=1 I1,la=1

Fourthly:

m m
J _ I J J l1 J J l1, l2
Y4 - ya:4 + Z |:4 ym?’yll - 5ll‘)(:ﬂ::| yl + Z |:6 nyyllyZZ - 511 4X$39l2:| yl yl +
=1 I ,la=1
m
J J li, 12,13
+ D [4 Yoyt gtayts — Oy 6Xx2yl2yl3} yiyryrt
l1,l2,l3=1
m
J J li,la, 13, 14
+ Z [yxyzlyzQyzgyM - 511 4Xzyl2yl3yl4:| YiYryryr t
l1,l2,l3,la=1
m m
7 Iy lo I3 14 1 J 7 !
+ Z [_511 Xyl2yl3yl4yl5} VYUY + Z [6 yzﬁyll — 0y, A X Yy
l1,l2,l3,l4,l5=1 l1=1

m
+ Y [12 Ve = 00, 6 X,aa — 6, 12 Xﬂyll} Yyl
I da=1

3

. . . L 1o 1
(48) + Z |:6 y;llleylg - 51]1 12 XxyZQyZS - 6[‘73 12 Xxyll yZQ:| y11 y12y23+
l1,l2,l3=1
m

j j Iy 1o I3 1
+ g [_5l1 6 Xy12y13y14 - 514 4 thylzyl:s} UYLy Ys +
l1,l2,l3,l4=1

NE

j j I, 1
> 30 = 0 12,0 | wh o+

—

o=1

m m
j j I 1o 1 j j l
3 [—5{1 Xy, — 07, 12 Xyllylg} iy + [4 Vi =4, 62@2} Yl +
Il2l3=1 =1

llv

_l’_

»
w

_l’_

NE

j j j i, 1
(499, = 8 4 %0 = 8,12, | Wl o+
I ,la=1

m
i j li, 12,1
S [ A%~ 0,6 X0 | uliulel+
l1,l2,l3=1

m
+ 3 [—5{1 4K, — 5] nyll] b+
I la=1

_l’_

w

m m
D Dl A A P S B TR A A )
L=1 I ,la=1

4.9. Inductive elaboration of the general formula. Now we compare the formula (2.9)
for Y4 with the above formula (4.8) for Yi. The goal is to find the rules of transformation
and of development by inspecting several instances, in order to devise how to transform
and to develope the formula (2.25) to several dependent variables.
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First of all, we have to develope the general monomial (y,,)"* - - (y»,)". In every
monomial present in the expressions of Y?! , of Y! , of Y§ and of Yi above, we see that
the number « of indices /3 appearing in all the sums er?,...,la:1 is exactly equal to p; +
-+ -+ pg. To denote these pi; + - - - + p4 indices [, we shall use the notation:

(410) ll:l?"'7l12/.1117"'7£d:17"'7ld1}td/7

R g

751 d
NS g
vV

Hit et pa

inspired by Convention 3.33. With such a choice of notation, we may avoid long sub-
scripts in the indices [, like [, ;... It follows that the development of the general
monomial (yy,)"* ---(y,)"® to several dependent variables yields m/** 4 possible
choices:

4.11) H yill”’l ...... H yf\dc;"dj

IR Z RT3 1<vg<pq
where the indices li.4,...,0u,--5la1, .-, lay, take their values in the set
{1,2,...,m}. Consequently, the general expression of Y7 must be of the form:

k+1

EECES VD SRED D »

d=1 1< < <Ag<k p121,,p0a 21 pada+-+pghg<e+1

m m m m
(4.12) DRI DR S
l1.1=1 ll:,ulzl lg.1=1 ld:,u,dzl
ll:ul ld:ud
I o I1 s
1< 1<va<pad

where the term in brackets [?] is still unknown. To determine it, let us examine a few
instances.
According to (4.8) (fourth line), the term [6),2, — 4 X;3]y, of Y, developes as

2?11:1 6yi2yll — (5{1 4 X3 yl21 in Yi. Here, 6 ),2, just becomes 6y£2yll. Thus, we

(B A = — g Ag+1
suspect that the term ”( )\(ﬁ)ulf | /\d!’;,‘i - d!)

of (2.25) should simply be developed as

* Vyr—mirs = —uara g ++q Of the second line

kK(k—=1) - (k—mA — -+ — pgAg + 1)
OGO 1l (gl jug)
QAL = — g Attt )]

(8$)H—ﬂl>\1—..A—MdAdayllzl . ayl“‘l .. ,ayldﬂ . ‘8yld:ud .

(4.13)

This rule is confirmed by inspecting all the other monomials of Y{, of Y7, of Yé and of
Y.

It remains to determine how we must develope the term in X’ appearing in the last two
lines of (2.25). To begin with, let us rewrite in advance this term in the slightly different
shape, emphasizing a factorization:

4.14)

D™ a1 (gl pag]

(1AL + - g A Xy 2y —mpgrg+1 yu1+~-~+ud—1:| .
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Then we examine four instances extracted from the complete expression of Y?:

m
J J li, 2, l3
Z [4 ymyzlyZQyzg - 511 6Xg¢2ylzyl3] Y1y
l1)l2,l3=1
m

Z |:12 yiyllyZQ - 6271 6 XnyZZ - 5;2 12 Xnyll] yllly?a

l1,l2=1

4.15) m
) ; Iy, la, I3 1

Z [—5{1 6 Xy12y13yl4 — 5;4 4 Xyllyl2y13i| y11y12y13y24’
l1,l2,l3,l4=1

m

; j Iy, 1o, I

S [0 Ay — 0,6 Xy | bty

l1,l2,l3=1

\

and we compare them to the corresponding terms of Y:
[4 V0 — 6 Xp2y] (11)°,
[12 yny — 18 Xa:Qy] Yyi1y2,
[—10 Xy?,] (yl)?’yg,

(=10 X,2] (y1)%ys.

In the development from (4.16) to (4.15), we see that the four integers just before X,
namely 6 = 6, 18 = 6 4+ 12, 10 = 6 + 4 and 10 = 4 + 6, are split in a certain manner.
Also, a single Kronecker symbol 5{( _is added as a factor. What are the rules?

In the second splitting 18 = 6 4 12, we see that the relative weight of 6 and of 12 is
the same as the relative weight of 1 and 2 in the splitting 3 = 1 + 2 issued from the lower
indices of the corresponding monomial ylf y?. Similarly, in the third splitting 10 = 6 + 4,
the relative weight of 6 and of 4 is the same as the relative weight of 1 + 1 + 1 and of
2 issued from the lower indices of the corresponding monomial ylll ylfylfyl;. This rule
may be confirmed by inspecting all the other monomials of Y5, Yg, of Y3, Yg and of
Y, Yi. For a general x > 1, the splitting of integers just amounts to decompose the
sum appearing inside the brackets of (4.14) as 1Ay, piaAs, . . ., ptgrg. In fact, when we
wrote (4.14), we emphasized in advance the decomposable factor (pi3 Ay + - -+ + pgAa)-

Next, we have to determine what is the subscript « in the Kronecker symbol 5{;. We
claim that in the four instances (4.15), the subscript « is intrinsically related to weight
splitting. Indeed, recall that in the second line of (4.15), the number 6 of the splitting
18 = 6 + 12 is related to the number 1 in the splitting 3 = 1 4 2 of the lower indices of
the monomial /!'4/2. It follows that the index I, must be the index I; of the monomial y/}!.
Similarly, also in the second line of (4.15), the number 12 of the splitting 18 = 6 + 12
being related to the number 2 in the splitting 3 = 1 + 2 of the lower indices of the
monomial 3}y, it follows that the index [, attached to the second X term must be the
index [, of the monomial 73.

This rule is still ambiguous. Indeed, let us examine the third line of (4.15). We have the
splitting 10 = 6 + 4, homologous to the splitting of relative weights 5 = (1 + 1+ 1) + 2
in the monomial y!'y??y!3yL. Of course, it is clear that we must choose the index
Iy for the Kronecker symbol associated to the second X term —4 X5, thus obtaining

—(5{4 4 X1 ioy1s. However, since the monomial ylfylfylf has three indices [, l» and I3,

(4.16)

there arises a question: what index [, must we choose for the Kronecker symbol (5lja at-
tached to the first X term 6 X,s: the index |y, the index ly or the index [3?
The answer is simple: any of the three indices 11, ls or I3 works. Indeed, since the

monomial yil ylf yi‘"’ is symmetric with respect to all permutations of the set of three indices
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{ll, l27 lg}, we have

4.17)
m m
7 Iy lo I3 lg4 J liylo, I3, la
g |:_6ll 6Xyl2yl3yl4 Y1 97912 = E : |:_5l2 6Xyllyl3yl4] Yvryrye =
l1,l2,l3,l4=1 l,l2,l5,l4=1
m
-y j o ls,
— |:_513 6 XyllyZle4:| yll y12y13y24.
l1,l2,l3,l4=1

In fact, we have systematically used such symmetries during the intermediate computa-
tions (not exposed here) which we achieved manually to obtain the final expressions of
Y7, of Y3, of Y and of Y. To fix ideas, we have always choosen the first index. Here,
the first index is [;; in the first sum of line 9 of (4.8), the first index [, for the second
weight 12 is [s.

This rule may be confirmed by inspecting all the monomials of Y3, of Yg, of Yi (and
also of Yg, which we have computed in a manuscript, but not copied in this Latex file).

From these considerations, we deduce that for the general formula, the weight decom-
position is simply g3 A1, . . . , ta\g and that the Kronecker symbol 67 is intrinsically associ-
ated to the weights. In conclusion, building on inductive reasonings, we have formulated
the following statement.

Theorem 4.18. For one independent variable x, for several dependent variables

(y',...,y™) and for k > 1, the general expression of the coefficient YI of the
prolongation (4.3) of a vector field is:
(4.19)

rk+1

Yi=Vi+> > ) >
d=1 1A <—<Ag<k 1 2Lpeitg =] i da -+ pgha<ht1
m m m m

DRI DISTRs Sy Rk — 1) (k= A+ + pada +2)
1\u1 l... YL |
la=1 Il =1 lin=1 L= (A DA gl (Mgl pg!
I 8“*/“)‘1*"'*Md/\d+u1+---+udyj .
(K — AL — -+ — pgha + 1)

(81-)/@—,&1/\1—..-—Md)xdayllzl . ayll:“l - ayld:l . ayld:“d
8'%_'“1’\1_"'_Nd)‘d+#1+"‘+lld)(

- 6lj1~1 ,Ul)\l =~ o
: (ax)H_MIAI_"'_Hd)\d+18yl1:1 e 8yl15/»‘1 e 8yld:1 .. 8yldiud
, OF A = —paAdt i
— & pada
d:1

L (@:L-)H*,ulz\l*'"*MdAdJrlayhd - ayllzm A 8/y\ld:1 - ayld:ud

ll:ul ld:ud
o~ T1 ok

1< < 1<vg<pa

Here, the notation Oy' means that the partial derivative is dropped.

Since the fundamental monomials appearing in the last line of (4.19) just above are not
independent of each other, this formula has still to be modified a little bit. We refer to
Section 6 for details.

4.20. Deduction of a multivariate Faa di Bruno formula. Let m € N with m > 1, let
y= (. ..,y") e K™ let f = f(y*,...,y™) be a C>®-smooth function from K™ to K,
let z € K and let g = ¢g'(z),...,¢g™ = g™ (x) be C* functions from K to K. The goal
is to obtain an explicit formula for the derivatives, with respect to z, of the composition
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h = f o g, namely h(z) := f(¢'(x),...,9g™( )) For A € N with A > 1, and for
j = 1,...,m, we shall abbreviate the derivative 2 by g/\ and similarly for hy. The
partial derivatives alf— will be abbreviated by fll

Appying the cham rule we may compute:

421)
= Z fl1 gllla

1=1

m m
1 1 l
Z T 91 97 + Z Ju 99
l1,lo=1 h=1
m m m
1 lo la L1 l
Z Ju o 91 977 97 + 3 Z Ji 1, 91" 99 + Z Ju 93,
l1,l2,l3=1 l1,la=1 l1=1
m

l1 lo s
ha= Y fiisisn 95 92 9¢ g1 +6 Z Ju otz 91 97 95+
l1,l2,l3,l4=1 l1,l2,l3=1

m m m
1 1 1 l
+3 Z fll,lz 921 922 +4 Z fll,lg gll 932 + Z fl1 9415
l1,l2=1 l1,la=1 =1
m m

hs = > fuddstats 92 GE G GT 10 DT fuunsn 91 91 9 g8
l1,l2,l3,l4,l5=1 l1,l2,l3,l4=1

m m
1 l2 i la 1
Z Jujo s 91 95 95 + 10 Z Ju o s 91 97 95+
l1,l2,l3=1 l1,l2,l3=1

m m m
I 1 1 1 l
+ 10 Z fll,lz 921 932 + 5 Z fl1,lz gll g42 + Z fll g51

l1,lo=1 l1,l2=1 =1

Introducing the derivations
(4.22)

Z Z Jugo 7 8f ;

l1=1 1 l1=1 l2=1
m 8 m m
3. A
= Z 92 ol + Z Z fuis 57— (9f - Z Jutots 57— afl R
=1 1 =1 2 =1 lo=1 l2 l2,l3=1 2,3
m 8 m
AL l
O ST TS SF B SN S
=1 9 =1 9 =1 —1
m m m 8
D 9D St Z frtsds 55— 4+ D fidpedn 55—
afz afz 8fl2 ol
=1 la=1 l2,l3=1 ot la,...,Ix=1 e

we observe that the following induction relations hold:

(4.23)
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To obtain the explicit version of the Faa di Bruno in the case of one variable x and sev-
eral variables (y!,...,y™), it suffices to extract from the expression of Y7 provided by
Theorem 4.18 only the terms corresponding to pu3 A1 + - - - + pgAg = K, dropping all the
X terms. After some simplifications and after a translation by means of an elementary
dictionary, we may formulate a statement.

Theorem 4.24. For every integer k > 1, the k-th partial derivative of the composite
function h = h(x) = f(g"(x),...,g™(x)) with respect to x may be expressed as an
explicit polynomial depending on the partial derivatives of f, on the derivatives of g and
having integer coefficients:

(4.25)

deh K K!
dxm_z Z Z Z MDA e e e (N Ha )
d=1 1<\ <<X <k p121,,0q021 pi Mi++pghg=k ( ! ) m ( d) Hd
m m
ll:ly'“:ll:ul:l ld:17~~~7ld:ud:1
8N1++Mdf dAlgllzul dAdgld:l/d
L1 e Ol oo Oflact .« . Oglding H A1 o H Aa
9y Oyen -~ Oy Oy'tra | g 1

We refer to Section 6 for the final writing of the above formula (4.25).

§5. SEVERAL INDEPENDENT VARIABLES AND SEVERAL DEPENDENT VARIABLES

5.1. Expression of Ygl, of Y/ . and of Y’ Applying the induction (1.31) and

11,02 11,i2,i3°
working out the obtained formulas until they take a perfect shape, we obtain firstly:

m n m n
. . Lk . ; k l N k Il
G2 Y, =V, 4> > [@; Y, =4, Xz;l} TR N [—5{2 ok Xy[‘;] Y U

li=1 ki=1 l1,la=1 k1,ko=1
Secondly:
(5.3)
m n
J —_\J k1 ~y)J k1 ~yJ s vk Il
Yi1,i2 - yxilxi2 T Z [52'1 yx’?yll T 5%’2 yxilyll 6l1 Xxilxh} Ypy T
l1=1 k1=1
m n

k1,k2 ~yJj 5] ski1 ypke 57 sk yka Iy l2
+ >, D [51‘1,2‘2 Vyya = 0y 0y Xy — 03 0y X5 | Uy Uis t
l1,lo=1 k1,ko=1

m n
_ 5J skike k3 I, 12,13
+ > [ 01y 03y i Xyttt | Yoy Yien Uiy T
li,l2,l3=1 ki,k2,ks=1

m n
Y oy, o obacky — o o A |+

i1, 12 lh 71 T Iy “i2 Tz
=1 ky,ko=1

m n
i ckaks ok | skaki pk | ghuke poka |l L
D {_5] 0iria X = 0, 075y X — 01, 03, 2Xy13] Vi Vo Uiy

Iy 71, t2 la “i1, i2 lo 71, 2 1
l1,la=1 ki1,ko,k3=1
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Thirdly:
m n
J _ k1~ kl J k1)) J k1 I
Yi17i2,i3 _yxilzi%ci?» + Z Z [5 Y 7'2x'”3yll N 11x13yl1 5 N zi gi2yl 5 X7'1$22a:7'3:| yk1+
=1 k1=1
m n
2 : kl,kz J k1,k2 ~yj k1,k2 ~yj
+ Z [ i1, 12 Y xi3yliyl2 +5@3 i1 Y zi2yliyl2 +6@2 i3 Y ziiyliyle
l1,lo=1 k1,k2=1
5] sk1 yko Y k2 57 kz
6 5 X 12 13 6 5 11 13 151 5 6@ 11112y11j| yk‘lyk‘2+
m n
k1,k2,k3 ~5i _ 57 skik2 ks _
T Z Z [511,12,13y11y12yl3 5 511 i2 XxiSyllyl2
l1,l2,l3=1 ki,k2,k3=1
_ s skike yks _ 57 skike k3
513 5i1, i3 Xxizyllylz 513 51'2, i3 X ziyliyl2 yk1yk2yk3+
m n
j cki,k2,k3 ks
+ Z Z [ 5 6@1712,23 Xyllylzyls yklyk2yk3yk4+
l1,l2,l3,la=1 Fk1,ko,k3,ka=1
m n
E : k17k2 J k1,k2 vy k17k’2 J
+ Z |: 11 ’Lz y 13yl1 5%3 ’Ll y 12yl1 ’LQ 13 y ’Llyll
11=1 ki,k2=1
_ k1 yko - k1 ko 5] sk1 pke I
5l (5 Xma;ls 5 5 Xllzls 6 5 X’1x12:| ykl,k2+
(5.4)

m n
k1,k2,k3 ~5J ks,k1,k2 ~yJ ko,k3,k1 47
+ Z Z [5%1,12,133) llyl2 +5Zl,22 Zgy llyZQ +511,22,Z3y llyl2_
l1,l2=1 k1,ka,k3=1

5l1 551272623 szlsylz 6 521612’];:33 X zi2yl2 511 6?22,7’2 ;,]jillylz -
5] ZSJ;QI ZSyll - 5J 52’??2 Xklzz b 5132 523,72 :1'213/11_
_5j 57{6117];;22 Xkli, S 5ljz 21,71:3? Xk% S 51]2 55217”;3? ka’lyll ykl yk2 k3+
LD DR DI E At o WA e R IO A it

l1,l2,l3=1 k1,k2,k3,kq4=1

5 skaka k1 _ sj skakika pka
5 511712,13‘){’1 '3 5 611712,23 yliyls

_ 57 skiks,ka yko
01, 04y i i yzlyzs] ?/kl%yks ke T

m n
J skikaks _ 57 shka,kak _ 57 skakika yks I la
+ Y X [ 51 6! xhs o] ghrhab xke g gk pla Tyl gl ot

i1, 12, i3
l1,l2=1 k1,k2,k3,ka=1

m n
2: 2 : k1,k2,k3 ~,J k1,ko ks _ ki,k2 yks ki,ka ks |l
+ [511 2,13 y 5 511 io X 5 5%1 i3 ‘X:c 5 522 i3 Xx yklykmks_‘_
l1=1 Fky,k2,k3=1
m n
57 skikeks ks 5 skakike ks 7 ckskaki pka
+ Z Z [ 512 521712723;( 5 521722 ZJX 5 6i17i2,i3 Xyll
l1,l2=1 ki,ka,k3,ka=1

ka,k3,ka
_5l 511, 12, 13 x 12] yk1yk2,k3,k4

5.5. Final synthesis. To obtain the general formula for Y] i WE have to achieve the
synthesis between the two formulas (3.74) and (4.19). We start with (3.74) and we modify

it until we reach the final formula for thm’iﬁ.
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m m m m
We have to add the g1y +- - -+ g sums " _, -+ le:m:l ------ D Zld;#fl’
together with various indices /. About these indices, the only point which is not obvious
may be analyzed as follows.

: (1,A1) 5005 (s M)
A permutation o € SMAIJF,“wd)\d

yields the list:
o(1:1:1),...,0(1:1:Ay),...o(lipg:1),.o o o(TipgiAy),. ..

(56) cono(di1:1), o (1ili Ny, oo (dipgi L), o (d g A,

In the sixth line of (3.74), the last term o(d : ug : Agq) of the above list appears as the
subscript of the upper index K, (4., :2,) Of the term X Ro(a:na:ra) According to the formal
rules of Theorem 4.19, we have to multiply the partial derivative of X'**(@1a2a) by a certain
Kronecker symbol (5{a. The question is: what is the subscript o and how to denote it?

As explained before the statement of Theorem 4.19, the subscript « is obtained as
follows. The term o (d: j14: \g) is of the form (e:v,: 7. ), for some e with 1 < e < d, for
some v, with 1 < v, < . and for some 7, with 1 < 7, < A.. The single pure jet variable

(5.7) yee

ewwe:ly s Reive:ve 7---7ke:ue:/\e

appears inside the total monomial

H by H la:v,
(5.8) yklillltlu"wkltul:)\l ykd:l/dzl7---7kd:ud:)\d7

IEZ RN 1<va<pd

77777

total monomial generalizes to several dependent variables the total monomial appearing
in the last line of (3.74)). According to the rule explained before the statement of Theo-
rem 4.18, the index [, must be equal to [..,,_, since l..,, is attached to the monomial (5.7).
Coming back to the term o (d: j14: Ag), we shall denote this index by

(59) le:ue = lﬂ(e:ue:'yg) = lﬂ'a(d:ud:)\d)a

where the symbol 7 denotes the projection from the set

(5.10) {1:1:0, . Lo A, e A1l di g N}
to the set
(5.11) (1, oy did, . de )

simply defined by 7(e:v.:7.) := (e:v,).

In conclusion, by means of this formalism, we may write down the complete gener-
alization of Theorems 2.24, 3.73 and 4.18 to several independent variables and several
dependent variables
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Theorem 5.12. For j = 1,...,m, for every k > 1 and for every choice of k indices
i1, ..., i inthe set {1,2,...,n}, the general expression of Y], is as follows:
(5.13)

Yipie =Vanan ¥ 2 DL 2 2

d=1 1M <-<AgSE p12l,5pma 21 pidi+-+para<r+1

m m m m
l1.1=1 I #171 lg.1=1 lg Ndil
n n n n
kl:l:la---vkkl:)\l:l kl:ultla---7k1:u1:A1:1 kd:1:17---7kd:l:)\d:1 k(i:udzlv--wk(i:ud:)\d:l
Z Z 5(60(1:1:1)"""k°(1:“1:>A‘1>""’ka(d:f"d:kd> . 7]
G (1)l (ug Ag) o (g Ag g Ag)

(11,231)5- (g > 2 q) 1AL+ FrgAg
S Xt tughy  TEOw

QAL = —paAatpa et a )]

axiT(H1A1+~~+Md>\d+1) . 8xiT(H) ayll;l . 8yld:“d

z : z : 5ko'(1:1:1)7"'7ka(1:,u,1:Al)z"'vko'(d:y,d:)\dfl)
7""(1)""’ZT<#1)\1)""’ZT(#1)\1+“'+Md>\d—1)
(0152155 (g A g) 1AL+ tpgrg—1
TES ) X+ dghg  TEOH

§F—HIAL == g AaHp1 et pd YR (d:pging)

J
’ l dippgiA ’ ; . -
I 7o (dipg:ig) Ot mr+Fngrg) ... Hriv(x) ath . aylﬂo(d:ud:)\d) .. ayld:ud ]
ll:ul ld vq
H ykl:ulzlv--wkl:ul:)\l o H Yk, vgilroKdivging

1< < 1<va<pd

(11,21)-5 (a5 Aa)
In this formula, the coset §, 7", )

rem 3.73, we have made the identification:

was defined in equation (3.71); as in Theo-

(5.14) {1,k ={1:1:0, . Loy A, .. A1, d g Mg}

Since the fundamental monomials appearing in the last line of (4.19) just above are not
independent of each other, this formula has still to be modified a little bit. We refer to
Section 6 for details.

5.15. Deduction of the most general multivariate Faa di Bruno formula. Let n € N
withn > 1,letx = (z1,...,2") € K", letm € Nwithm > 1, let ¢/ = ¢/(z!,...,2"),
j =1,...,m, be C>*-smooth functions from K" to K™, lety = (y',...,y™) € K™ and
let f = f(y',...,y™) be a C*> function from K™ to K. The goal is to obtain an explicit
formula for the partial derivatives of the composition h := f o g, namely

(5.16) h(z', ... 2") = f (¢ («",....2"),...,g" (", ..., a™)).

Forj=1,...,m,for A € Nwith A > 1 andforarbitraryindicesil, o= 1,....,n,we

shall abbreviate the partial derivative W by g;, ., and similarly for h;, ;. For
I\

arbitrary indices [y, ...,[y = 1, ..., m, the partial derivative W will be abbreviated

by fi..1,
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Appying the chain rule, we may compute:

5.17) .
i
hiy iy = Z i 2 [in gfﬂ + Zm: Ju [9212} ;

llylZ— 1=1
m
_ E I la I3 § : I o
74177427743 - fl1,l2,l3 |:g’Ll g’iz glg:| + fllyl2 |:gzl giz,’ig + glg g’L1 ,13 + gzg gll,zz +

l1,l2,l3=1 l1,la=1

m

Iy

+ Z fll [gihimis] )

=1

m
| f l1l2l314+
i1,i2,i3,04 — lidosdssla |95y 9iy Yig Jig

l1,l2,l3,l4=1

z : i Iz I3
fllvl2713 |:gZ2 gig gil,i4 + glg gll glz 14 + gzl glg glg,l4+
l1,l2,l3=1

+gzl 924 gzg i3 + g7,2 914 923 i1 + 913 97,4 gzl 7,2:| +

m
l l
+ Z fl17l2 |:gii,i2 gii,izl + gll ,i3 g22 i4 + g’Ll,’L4 glz,lgi| +

l1,l2=1

l1 12
+ Z fl17l2 [gil gig,ig,i4 + ng 911,13,14 + gza gn,zz 4 + gm 911,12713} +
l1,la=1

m
l
+> fu [gil,ig,iw} :

I1=1

Introducing the derivations

m
Z Z Gry i Z > ok g 31: :
=1 ll kl l1 12—1
m
-y Z v 5, S zl +
k=1 I, = ki kika=1 l1=1 e, k,
m m
l1
DY Ly
9; fl1,l2 an fl1,12,l3 aleg )
=1 la=1 la,l3=1 ’



LIE SYMMETRIES AND CR GEOMETRY 95

Z Z gkl, l1 + Z Z gk1,1€2, 11 +ot
dg dg

ki=1 l1=1 k’1 k1,ko=1 l1=1 k1,ko
0
+ E : E Gk ko, kx_1,i a Py T
k1,k2,.. . kx—1=1 l1=1 ka1

m m
l
+Zgi1 Z Juje 77 f + Z Juois 57— 8f .
lo l2)l3

I1=1 lo=1 la,l3=1

0
-+ Z fl1,l2,l3,...,l)\ m 5
25035050\

l2,l3,...,0x
we observe that the following induction relations hold:
2
hil,iz = Fz'g (hH) )

(5.19) hivinis = iy (hiria)

A
hi1,i2,---,i>\ - Fi,\ (hi17i27---7i,\—1) :

To obtain the explicit version of the Faa di Bruno in the case of several variables
(x',...,2") and several variables (y!,...,y™), it suffices to extract from the expression
of Yg ....i, provided by Theorem 5.12 only the terms corresponding to gy A1+ - -+ pgAa =
k, dropping all the X’ terms. After some simplifications and after a translation by means
of an elementary dictionary, we obtain the fourth and the most general multivariate Faa di

Bruno formula.

Theorem 5.20. For every integer k > 1 and for every choice of indices 11, . .. i, in the
set {1,2,...,n}, the k-th partial derivative of the composite function

(5.21) h=h(z'.. . 2" =Ff (gl(xl, S P L € ,x"))

with respect to the variables x'*, ..., 2" may be expressed as an explicit polynomial de-

pending on the partial derivatives of f, on the partial derivatives of the ¢° and having
integer coefficients:

(5.22)

e MDS 2. 2

d=1 1< <<Ag<k 1210421 prd1+-+pgrg=k
au1+~~~+udf

m m

Z o Z I ... by oo lg: ... ld:pg
l1:17~~~7l1:H1=1 ld:l?"'zldzpdzl ay ay ay ay
BT | T R
7;0(1:1/1:1) e io’(l:ulzz\l) ot
JES(M’M) ~~~~~ (hgAg) 1< < 8x (9x

11 O gliva
o0 8$i0(d:ud:1) .. aajio'(d:ud:)\d)

1<va<pd
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II1: Systems of second order

Table of contents
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§1. EXPLICIT CHARACTERIZATIONS OF FLATNESS

In 1883, S. Lie obtained the following explicit characterization of the local equivalence
of a second order ordinary differential equation (&;): y.. = F(z,y, y.) to the Newtonian
free particle equation with one degree of freedom Yy x = 0. All the functions are assumed
to be analytic.

Theorem 1.1. ([Liel883], pp. 362-365) Let K = R of C. Let x € Kand y € K. A local
second order ordinary differential equation y,, = F(x,y,y.) is equivalent under an
invertible point transformation (x,y) — (X (z,y),Y (x,y)) to the free particle equation
Yxx = 0 if and only if the following two conditions are satisfied:

(1) Fyyoyey. = 0, or equivalently I is a degree three polynomial in y,, namely there
exist four functions G, H, L and M of (x,y) such that F' can be written as

(ii) the four functions G, H, L and M satisfy the following system of two second order
quasi-linear partial differential equations:

( 4 2
0 — _2ny +§ Ty ng$+
2 4
+2(GLy—2G,M —4GM, +>HL,— - HH,,
(1.3) ) A 3 3
0: —gHyy +§ny—2sz+
2 4
\ +2G M, +4G, M ~2(H M), — 3 H, L+ 3 LL,.

Open question 1.4. Deduce an explicit necessary and sufficient condition for the associ-
ated submanifold of solutions y = 11(z, a, b) to be locally equivalentto Y = B + X A.

Assuming F' = F(z, y,) to be independent of y, or equivalently assuming M g, to be:

(1.5) y=0b+1(x,a),
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the author has checked that equivalence to Y = B + X A holds if and only if two differ-
ential rational expressions annihilate:

1,244 I,243 11,2 15 IT, 242 (Hmz)2 4 I,242 11,3

4

(M) (L)’ (IL)” ()’
2 1100 o3 Tp2q g2 2, (H$a2)3
- ——+10 = —15———"  and
o oy ()
. 114,02 B 113,42 11,2, B 11,3, 112,42 B I, 11,2
(ILa)” (ILa)” (L) (M)’
2 3
115 Hx2a2 (Hx:a) +10 H:p?’a HxZai_IxUL? 15 (H:L"Qa) 1_5[xa2 '
(Hma) (Hﬂm) (H:pa)

As an application, this characterizes local sphericity of a rigid hypersurface w = w +
i©(z,z) of C2. The answer for a general y = II(x,a,b), together with a proof, will
appear elsewhere.

A modern restitution of Lie’s original proof of Theorem 1.1 may be found in [Me2004].
In this reference, we generalize Theorem 1.1 to several dependent variables y =
(y', 4%, ..., y™). In the present Part III, we will instead pass to several independent vari-
ables z = (2!, 2%,... a").

Theorem 1.7. Let K = R or C, let n € N, supposen > 2 and consider a sys-
tem of completely integrable partial differential equations in n independent variables

x = (z',...,2") € K" and in one dependent variable y € K of the form:

(1.8)  Yairan () = FM2 (2, y(2), 901 (2), .., yen (2)), 1 <J1,j2 <o,

where F7172 = F7201 Under a local change of coordinates (x,y) — (X,Y) =
(X (x,y),Y (x,y)), this system (1.8) is equivalent to the simplest “flat” system

(19) Yxhx]’z - 07 1 < jlaj2 < n,
if and only if there exist arbitrary functions G;, ;,, H fih, Lfll and M* of the variables
(x,y), for 1 < ju, ja, k1 < n, satisfying the two symmetry conditions G, ;, = G, ;, and

H J]fi g, =H j]-‘; j1» such that the equation (1.8) is of the specific cubic polynomial form:

a 1 1
(1.10) Yo = Gjrjo + > Yot (H]’.fl{jz 5 Yo L 5 Yain L Yo Yo M ’“) :
ki=1

forji,5o=1,... n.

It may seem quite paradoxical and counter-intuitive (or even false?) that every sys-
tem (1.10), for arbitrary choices of functions G, ;,, H fll,jQ, Lfll and M*1, is automatically
equivalent to Yy, yi» = 0. However, a strong hidden assumption holds: that of complete

integrability. Shortly, this crucial condition amounts to say that
(111 Djs (thjQ) :Dj2 (thjs)’

for all j1, 72,53 = 1,...,n, where, for 7 = 1,...,n, the D; are the total differentiation
operators defined by

0 0 N 0
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These conditions are non-void precisely when n > 2. More concretely, developing
out (1.11) when the F7172 are of the specific cubic polynomial form (1.10), after some
nontrivial manual computation, we obtain the complicated cubic differential polynomial
in the variables y,«. Equating to zero all the coefficients of this cubic polynomial, we

obtain four familes (I’), (II"), (II") and (IV’) of first order partial differential equations

satisfied by G, j,, Hi' . L' and M*:

20 141,527

0=G

n
Gy jsaiz T § :

k1=1

J1.Jo,@I3 T

(=5 . .
0= 5]3 G.]lv]?v

1 k
+5 Gj17j3 ngl 9

n
ko
E sz,]é Lj

ko=1

n
ko
E sz ,J3 L J1

ko=1

+ Z sz J3

\ k2 1

k1
+5 L
1)

k
+ 5

H

Ji.j2

(

H ko)

]{?2)
0= Z <(5 J1:525Y
geSy

1
0'(2) 0(1) _ =
+5 Lt L),
1 sho _
2 2
k

o(2) ko

+6j2 Gjhj:s M™®

ko (1)
J2,273

aIT)
k3—1

0(1) E
2 Jl

k31

k3,53

0'(1)
+2 612 ks3,j3

ks=1
1 ko‘(l)

2]3 Z

L ka=1

HFs

J1,J2

HF

Ji,J2

k1
y 53’2 Gjlva,y +

5’%(2)
2 J3

5 to)

J1

ko (2) ko
— 05, Gy g MMM+

n
k(1) ko (2) ks
+5j17 J2 z : Gk3J3M
H ko(2) Lk3 _

H 0(2) Lk3 _

ko (2
k3

n

-

k1=1

HM

J1,J3

Gy js Gy jo-

k1
J1,J3,@72

HA -

J1,J2,293

1
Y Gjhjz Lf;+

5k1

k
2 J1 Z ka'z Lj§+

ko=1

Z Gk’z,jz L;?_‘_

ko=1

k
S

n
o 2 : szdz HJ17J3

ko=1

_ d(2> d(1>
5 Hjl y3,y+

(el ko'
o 5 (1)%o(2) E Gkggz Mk3_|_

Ji,
k3=1

0'(2) k
Z Hks J2 L 3+

k31

o(1) ko2) 1ks
2 J3 Z Hks 2J2 L +
ks=1

>

kz=1

1 ko‘(l)
2 ]1

1 ko(l)
2 92

Hk3 ko 2)

J1 J3
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( 1 1
. ko(3):ko(2) ko(3y:ko2) 1ko(1)
0= Z (2 5]37 Ji LJ2 Y § 5]’2, J1 Ljs,y +
ceB3
0(3)7 o(2) 0(1) 0(3)7 o (2) a(l)
+6]2 J1 MxJS 5]37 J1 MmJZ +
(Iv?’)
g(s): cr(l) ks (2) ka 0(3)7 0(1) ko (2) kg
+5 Z Hk4u3 M 737 2 : Hk4 P M™+
k4 1 ]C4 1
0(1), 0(3) } : L 0(2) Lk4 o 1 ku(l)v 0(3) 2 : L 0(2) Lk4
4 ]1 4 J1 :
\ ka=1 ka=1

(These systems (I’), (I’), (II") and (IV’) should be distinguished from the systems (I),
(), (IIT) and (IV) of Theorem 1.7 in [Me2004], although they are quite similar.) Here,
the indices 71, Jo, J3, k1, ko, k3 vary in {1,2, ...,n}. By &, and by &3, we denote the
permutation group of {1, 2} and of {1, 2, 3}. To facilitate hand- and Latex-writing, partial
derivatives are denoted as indices after a comma; for instance, G, ;, .35 is an abreviation
for G}, ;,/0x%. To deduce (I'), (II"), (III") and (IV’) from equation (1.11), we use the
fact that every cubic polynomial equation of the form

0=A+ Z B/ﬁ * Ypk T+ Z Z Ck’hkz © Ygkr Yo T

k1=1 k1=1 ko=1

+ Z Z Z Dk1,k27k3 © Yk Ypka Ygka

k1=1 ko=1 ko=1

(1.13)

is equivalent to the annihilation of the following symmetric sums of its coefficients:
0=A4,

0 = By,,

0= Chyky T Chy ey

0 = Dy korks T Dhig i ko + Do ks by + Do er ks T Dieg ooy + Dier g s -

for all kl,kz,k;; = 1,. .., n

In conclusion, the functions G, ;,, H ]kll 20 Lfll and M*! in the statement of Theorem 1.7
are far from being arbitrary: they satisfy the complicated system of first order partial
differential equations (I’), (II’), (III") and (IV’) above.

Our proof of Theorem 1.7 is similar to the one provided in [Me2004], in the case of
systems of second order ordinary differential equations, so that most steps of the proof
will be summarized.

In the end of this paper, we will delineate a complicated system of second order partial
differential equations satisfied by G;, j,, Jkll oo Lfll and M* which is the exact analog of
the system described in the abstract. The main technical part of the proof of Theorem 1.7
will be to establish that this second order system is a consequence, by linear combinations

and by differentiations, of the first order system (I’), (II"), (III’) and (IV”).

(1.14)

Open question 1.15. Are Theorems 1.1 and 1.7 true under weaker smoothness assump-

tions, namely with a C* or a W,5%° right-hand side ?

We refer to [Ma2003] for inspiration and appropriate tools.
Open question 1.16. Deduce from Theorem 1.7 an explicit necessary and sufficient con-

dition for the associated submanifold of solutions y = b+11(z*, a*, b) to be locally equiv-
alenttoY = B+ X'Al + ... 4+ X" A",
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As an application, this would characterize local sphericity of a Levi nondegenerate
hypersurface M C C"*! with n > 2.

Generalizing the Lie-Tresse classification would be a great achievement.

Open problem 1.17. For n = 2 establish a complete list of normal forms of all possible
systems (1.7) according to their Lie symmetry group. In case of success, classify Levi
nondegenerate real analytic hypersurfaces of C? up to biholomorphisms.

§2. COMPLETELY INTEGRABLE SYSTEMS OF
SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

2.1. Prolongation of a point transformation to the second order jet space. Let K = R
or C,letn € N, supposen > 2, let z = (:cl, ...,2") € K" and let y € K. According to
the main assumption of Theorem 1.7, we have to consider a local K-analytic diffeomor-
phism of the form

(2.2) (2, y) — (X7 (2™, y), Y(2",y)),

which transforms the system (1.8) to the system Yy yi» = 0, 1 < j1, J2 < n. Without
loss of generality, we shall assume that this transformation is close to the identity. To
obtain the precise expression (2.35) of the transformed system (1.8), we have to prolong
the above diffeomorphism to the second order jet space. We introduce the coordinates
(27,9, Ypi1 » Yuin wi» ) ON the second order jet space. Let

0 0 - 0
= ok + Yk 8_y+; Ykl @7

2l

(2.3) Dy,

be the k-th total differentiation operator. According to [O11986, BK1989, O11995], for
the first order partial derivatives, one has the (implicit, compact) expression:

Y1 DXt ... DX DY
(2.4) : = P : : :

Yxn D, Xt ... D, X" DY

-1

where (~)_1 denotes the inverse matrix, which exists, since the transformation (2.2) is
close to the identity. For the second order partial derivatives, again according to [O11986,
BK1989, O11995], one has the (implicit, compact) expressions:

ijxl Dle te Dan D1YXj
(25) : = Do : :
YXJX" DnXl tee Dan DnYX]

-1

forj = 1,...,n. Let DX denote the matrix (D; X’ )EEZ , where i is the index of lines

and j the index of columns, let Yy denote the column matrix (Yx:),;, and let DY be
the column matrix (D;Y), ¢; .-

By inspecting (2.5) above, we see that the equivalence between (i), (ii) and (iii) just
below is obvious:

Lemma 2.6. The following conditions are equivalent:
(i) the differential equations Y, xx = 0 hold for 1 < j, k < n;
(ii) the matrix equations Dy(Yx) = 0 hold for 1 < k < n;
(iii) the matrix equations DX - Dy(Yx) = 0 hold for 1 < k < n;
(iv) the matrix equations 0 = Dy(DX) - Yx — Dp(DY') hold for 1 < k < n.
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Formally, in the sequel, it will be more convenient to achieve the explicit computations
starting from condition (iv), since no matrix inversion at all is involved in it.

Proof. Indeed, applying the total differentiation operator Dy, to the matrix equation (2.4)
written under the equivalent form 0 = DX - Yx — DY, we get:

2.7) 0= Dy(DX) - Yy + DX - Dy(Yy) — Dy(DY),

so that the equivalence between (iii) and (iv) is now clear. ]

2.8. An explicit formula in the case n = 2. Thus, we can start to develope explicitely
the matrix equations

(2.9) 0= Dy(DX) - Yx — Di(DY).

In it, some huge formal expressions are hidden behind the symbol Dy. Proceeding induc-
tively, we start by examinating the case n = 2 thoroughly. By direct computations which
require to be clever, we reconstitute some 3 x 3 determinants in the four (in fact three)
developed equations (2.9). After some work, the first equation is:
Xp X X | | X X X
0= ya1z - Xil ng X |+ Xil X§2 Xglxl +

Yo Ye v, Yo Ye Yoo
XL XL Xl X! XL, X!
x = x 2lpl 2 y
(2.10) + y{L'l . 2 X$21 Xig Xily - X3231.1‘1 Xig Xy2 +
Yy Y Y, Yoy Ye Y,
Xl Xl Xl
! plgl y
T Yp2 o — Xil Xilxl XZ? +
Yo Yo Y,
XL X, XL XL, XL X]
+ Yzt Ygt X;?l Xg%? ij -2 Xa?ly XEQ Xy2 +
Yo Y. Y, Yy, Y Y,
X X;ly X,
+ Yzt Yg2 —2 Xa%l X:(2:1y Xy2 +
Yo Y, Y,
X;y X;Q )(y1
+ Yzt Ypt Yz1 - § — ij X§2 Xy2 +
Yo Ye Y,
1 1 1
PO
+ Yot Yo Y2 - § — Xxl ny Xy
Yoo Yy, Y,

This formula and the two next (2.22), (2.23) have been checked by Sylvain Neut and
Michel Petitot with the help of Maple.

2.11. Comparison with the coefficients of the second prolongation of a vector field.
At present, it is useful to make an illuminating digression which will help us to devise
what is the general form of the development of the equations (2.9). Consider an arbitrary
vector field of the form

- 0 o)
(2.12) L= Xk _— 4y~
; oxk dy
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where the coefficients X'* and ) are functions of (x, ). According to [011986, BK1989,
011995], there exists a unique prolongation £ of this vector field to the second order jet
space, of the form

(2.13) L3 .=+ Z Y, % + Z Z Y -ayi )

J1=1 Jj1=1 jo=1
where the coefficients Y, Y, ;, may be computed by means of formulas (3.4) of Sec-
tion 3(II). In Part II, we obtained the following perfect formulas:

( n
Yo = Yonwi + O Yorr - {08 Yooy + 05 Vo — X5 b+

k1=1

k1,k k k k k
(2.14) ) Yk Y - {%f, js Yoy — 05 X3 — 05 Xxiy} +

ki=1 ko=1

+ Z Z Z Yuk1 Ygko Yoks - {_5;?11;?22 X:@j} ’

\ k1=1 ko=1 k3=1

for ji,j2 = 1,...,n. The expression of Y, does not matter for us here. Specifying this
formula to the the case n = 2 and taking account of the symmetry Y, » = Y5 ; we get the
following three second order coefficients:

( Y171 = y$1x1 + Yyl - {2 yxly — X;le} + Yz2 - {—Xﬁlml} +
Yot Yo - {Vyy — 2800, F + Yar Yoz - {22} +
+ Yzt Yzt Yol - {_Xyly} + Yzt Yzt Ya2 {_X;y} )
Y1,2 = yxlzg + Ygr {yfﬂzy - Xa}laﬁ} + Y2 {yxly o Xa?la:Q} +
+ Yot Yut - {_Xg,}?y} + Yzt Ya2 {yyy - Xxlly - X122y} +
+ Y2 Yg2 - {_Xgly} +
+ Yzt Yot Ya2 {_Xyly} + Yzt Y2 Ys2 {_Xyzy} )
Y2,2 = yzﬂm? + Yyt {_Xxl%:?} + Ya2 {2 yx?y - Xy?zxz} +
T Yot Yu2 {_2 Xx12y} T Y2 Yg2 {yyy - 2‘)(932?;} +
\ + ot Ya2 Yo - { =Xy b+ o2 a2 g2 - { =4}
We would like to mention that the computation of Y, j,, 1 < j1,J2 < 2, above is easier
than the verification of (2.10). Based on the three formulas (2.15), we claim that we can
guess the second and the third equations, which would be obtained by developing and
by simplifying (2.9), namely with y,1,2 and with y,2,2 instead of y,1,2 in (2.10). Our

dictionary to translate from the first formula (2.15) to (2.10) may be described as follows.
Begin with the Jacobian determinant

(2.15)

XL XL X!
(2.16) X2 X% X!
Yo Y Y,

of the change of coordinates (2.2). Since this change of coordinates is close to the identity,
we may consider that the following Jacobian matrix approximation holds:

XL X, X 100
(2.17) X4 X% X2 |=(o10
YV Ye Y, 001
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The jacobian matrix has three columns. There are six possible second order derivatives
with respect to the variables (z', 22, y), namely

(2.18) (')xlxla (’)x1x27 (')x2x27 (')xlz,n (')arQy’ (‘)yy'

In the Jacobian determinant (2.16), by replacing any one of the three columns of first
order derivatives with a column of second order derivatives, we obtain exactly 3 x 6 = 18
possible determinants. For instance, by replacing the third column by the second order
derivative (-),1, or the first column by the second order derivative (-),1,1, we get:

Xp X Xy Xy Xpp X,
(2.19) X2 XL X2, or X, Xo X
Yxl Yx2 Y;ly Y:E1x1 Y;CQ Y;/

We recover the two determinants appearing in the second line of (2.10). On the other
hand, according to the approximation (2.17), these two determinants are essentially equal
to

]- O Xxlly X.;lxl O O
(2.20) 01 X2, |=Ys,  orto X2, 10 |=X.,.
00 Y, Yo 01

Consequently, in the second line of (2.10), up to a change to calligraphic letters, we
recover the coefficient

2.21) 2Vaty — Xpi

of y,, in the expression of Y ; in (2.15). In conclusion, we have discovered how to pass
symbolically from the first equation (2.15) to the equation (2.10) and conversely.

Translating the second equation (2.15), we deduce, without any further computation,
that the second equation which would be obtained by developing (2.9) in length, is:

XL X X, XLoXL Xl
0= Ygpig2 - Xg%l ng XZ? + X:?l X§2 Xile +
Y Y Y, Yo Yy Yo
X;l X;Q X;Qy X;lmg X;Q Xy1
(222) + Yyt - Xgl Xiz Xizy - X§1x2 ng Xj +
Yxl 3/;?2 }/‘,Ezy lez2 Yx2 }/y
XL XL XL || XL XL X
+ Y2 X§1 ng X§1y - X§1 ngle Xj +
le Y’r? ley }fml S/zlx? }/y
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1 1 1
XL, XL X

tya e | Xy, X X[t
Yo, Y2 Y,
XL XL XL || XL, XL X
+ Yzt Yg2 Xgl X§2 Xy2y — Xa2:1y Xf,g X; —
Yo Y Y, Yy, Ye Y,
X1 X;Qy X, X1 X;ly X,
_ szl Xizy Xy2 + Yp2 Y2 § — szl Xily XS +
Yy Y, Y, Yy Ya, Y,
Xz}y X;Q Xz}
+ Yzt Yot Y2 - § — ng X$22 X?? +
Yyy Yo Yy
Xil Xyly Xz}
T Yal Ya2 Y2 ©  — le ng Xg?
Yo Yy Y,

Using the third equation (2.15), we also deduce, without any further computation, that the
third equation which would be obtained by developing (2.9) in length, is:

XLoXL X} x4, X! X!

2222
Ozyx2w2' X12:1 X:§2 XCS + Xx21 X§2 X§2r2 +
Y1 Y Yy Yo Yo Yoo
XL, X.L X!
(2.23) Fyer - | Xpe X5 XJ | 0+
Yoo2 Y2 ify
X;l Xalc2 X;zy X;l X;QIQ X;
+ Y2 2 Xil X§2 X§2y - X§1 X§2x2 X; +
Y Y szy Yo Y. Yy
XL, XL, X!
Fyp gz =2 | X2y XBXJ |+
szy Yo Y,
X;l X;Q X; X;l X;Qy X!
tueye S| Xa Xp Xp, | —2| X4 XL, Xo |+
Y. Y Y;Jy Yo Y;czy Y;J
Xyly X1, Xy1
+ Yzt Yz2 Ya2 - Xyzy X§2 XZ? +
Yyy Ye2 Y,
Xy Xl X
F Y2 Y o2 — | X Xy, X
Yoo Yy Y,

2.24. Appropriate formalism. To describe the combinatorics underlying formu-
las (2.10), (2.22) and (2.23), as in [Me2004], let us introduce the following notation for
the Jacobian determinant:

X ;1 X1, X;
(2.25) Az |2?y) = | X4 X% X

}/11 Ym2 Yzy
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Here, in the notation A(x!|z?|y), the three spaces between the two vertical lines | refer
to the three columns of the Jacobian determinant, and the terms z!, 2, y in (z!|2?|y)
designate the partial derivatives appearing in each column. Accordingly, in the following
two examples of modified Jacobian determinants:

( Xh,. XL X}
A(z'2?|2?y) = | X}, X2 X and
Yy Ye Y,
(2.26) X, X, X,
A(z'|2?laly) = | X XD X5, |,
Yo Ye Y

we simply mean which column of first order derivatives is replaced by a column of second
order derivatives in the original Jacobian determinant.

As there are 6 possible second order derivatives (-),1,1, (+)z122, (*)ztzv, (+)z222, (+)z2y
and (-),, together with 3 columns, we obtain 3 X 6 = 18 possible modified Jacobian
determinants:

A(z'z!|2?|y) Alz'|z'zty)  Az'|z?|z'z’)
A(z'z?|2?|y) A(z'|z'2?ly)  Az'|z?|z'2?)

A(z'y|2?|y) Az |z'yly)  Az'|z?|z'y)

(227) 2 .21..2 1.2 2 11..21..2 2
A(z*z7 |z |y) Az |z*z%ly) Az |27z 27)

A(x?y|2?|y) Alz'2?yly)  Az']2®|z?y)

L Ayylz®ly) Az lyyly) Al |2%[yy).

Next, we observe that if we want to solve with respect to y,1,1 in (2.10), with respect
to y,1,2 in (2.22) and with respect to y,2,2 in (2.23), we have to divide by the Jacobian

determinant A(z'|z?%|y). Consequently, we introduce 18 new square functions as follows:
(2.28)

(1 A(lata?ly) L A(ta?aty) L Aatyla?]y)
|:| 1,.1 +— — =& D 1,.2 +— ———— (5 D 1, = ———— T
v A(zta?y) v A(ztz?]y) TV Azta?ly)
L A@Pa?a?y) L AaPyla?|y) L Alyyla?ly)
(1o 0= ——F5—= 0y = — 27 = —Jz 77
v Azt |22]y) Y At a?y) Y A 22]y)
2 Az |2zt y) 2 Azt 2?]y) 9 Azt ztyly)
g 1,1 = “x 7 17 5 ~ O 1,90 i—m ————————F—— [l | ="
v Azt |22]y) v A(ztz2]y) vy A(xta?y)
e, . Alelfza?ly) e, . Alllzyly) 2 . Alllyyly)
22 Aat]a?]y) 7Y Axa2]y) W Azt]2?y)
DAY AR AG'y)
rE Azta?|y) zE Azta?y) 7Y Art]a?y)
D A AR A
L7 Azta?y) Y Aata?y) W A(xt]a?ly)

Thanks to these notations, we can rewrite the three equations (2.10), (2.22) and (2.23)
in a more compact style.



106 JOEL MERKER

Lemma 2.29. A completely integrable system of three second order partial differential
equations

Yoot (1) = F (), 2%, y(2), Yo (2), 422 ()
(2:30) Yorez(2) = F12 (2, 2%, y(2), Yo (), 2 () |

Yore2 (1) = F22 (a1, 2%, y (), yor (2), Y22 (7))
is equivalent to the simplest system Yxi1x1 = 0, Yxi1x2 = 0, Yx2 x2 = 0, if and only if
there exist local K-analytic functions X', X2, Y such that it may be written under the

specific form:

;

Ypiat =~ 1 + Yot (—2 O3y + Dilxl) +yp2 - (Ofig) +

by - (—Dgy 42 D;ﬂy) b Y Y2 - (2 Dily) +

+ Yot Yor Y1 - (Oyy) + Yot Yot Y2 - (O5,)
otar =~ 31 (<O + Ohasa) e (-0, + O +
2.31) by Yot - (D;Qy) byt Y2 - (—Dg’;y +0OL, + Dizy) +

+ Y2 Y2 - (Dily) + Yot Ut Yo - (Opy) + Yot Y2 ¥a2 - (O5,)
Yozgz =~ + 1 - (Ohogo) + Y2 - (—2 2, + Dim) +

o e (200,) + ez e - (—0%, + 202, ) +

+ Yt Yu2 Ya2 - (Dgl;y) + Yp2 Yg2 Ys2 (Df/y) :

2.32. General formulas. The formal dictionary between the original determinantial for-
mulas (2.10), (2.22), (2.23), between the coefficients (2.15) of the second order prolon-
gation of a vector field and between the new square formulas (2.31) above is evident.
Consequently, without any computation, just by translating the family of formulas (2.14),
we may deduce the exact formulation of the desired generalization of Lemma 2.29 above.

Lemma 2.33. A completely integrable system of second order partial differential equa-
tions of the form

(234) yacjlacﬁ(I) :Fjl,h <x7y(x>7y:vl(‘r)7'"7yw"($))7 j17j2 = 17"'”7

is equivalent to the simplest system Yxj xi» = 0, j1,J2 = 1,...,n, if and only if there
exist local K-analytic functions X', Y such that it may be written under the specific form:

( n
L n+1 k1 k1 n+1 k1 n+1
Yzirgiz = _D$j1xj2 + E Yzkr {(Dzjlzh - 5j1 ij2y - 6j2 Dzjly> +

ki1=1
(2.35) 1 1
Y (Dl;;éy 9 5521 DZ?;H) T Yo - (Dgly 9 5;?11 DZ?;H) T
\ Yo Yoo (O }-
Of course, to define the square functions in the context of n > 2 independent variables

(x', 2% ..., ™), we introduce the Jacobian determinant

XL oo XL X!
2.36 Al ] Jay) = | : E ,
236 W =] T g

Yy - Y Y,
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together with its modifications
(2.37) A (] Pl 2] y),
in which the k;-th column of partial first order derivatives |** z*1| is replaced by the col-

umn |’“1 leij\ of partial derivatives. Here, the indices k1, j1, jo satisfy 1 < £y, 71, 72 <
n + 1, with the convention that we adopt the notational equivalence

(2.38) vt =gy |

This convention will be convenient to write some of our general formulas in the sequel.
As we promised to only summarize the proof of Theorem 1.7 in this paper, we will not
develope the proof of Lemma 2.33: it is similar to the proof of Lemma 3.32 in [Me2004].

§3. FIRST AND SECOND AUXILIARY SYSTEM

3.1. Functions G, ;,, H Jkll ia? Lfll and M*', To discover the four families of functions
appearing in the statement of Theorem 1.7, by comparing (2.35) and (1.10), it suffices (of

course) to set:

( o n+1
Gj1,j2 T _thsz’
k1. k1 sk 4+l sk e+l
H]ly]Q - Dx71x72 6 |:|$32y 6 Dgﬂly
(32) L/ﬁ — 9 Dkl 5k1 Dn+1
T yy
ki ._ k1
\ M" = Dyy.

Consequently, we have shown the “only if” part of Theorem 1.7, which is the easiest
implication.

To establish the “if” part, by far the most difficult implication, the very main lemma
can be stated as follows.

Lemma 3.3. The partial differerential relations (I'), (II’), (III") and (IV’) which express
in length the compatibility conditions (1.11) are necessary and sufficient for the existence
of functions X', Y of (z"',vy) satisfying the second order nonlinear system of partial
differential equations (3.2) above.

Indeed, the collection of equations (3.2) is a system of partial differential equations
with unknowns X', Y, by virtue of the definition of the square functions.

3.4. First auxiliary system. To proceed further, we observe that there are (m + 1) more
square functions than functions G, HM Lfll and M*'. Indeed, a simple counting

yields: s e
;,;nwm} = @a #{Diily} = n2>
33 #{08) = n. e,y =",
O, = #{D”“} =1,
whereas
Ly n(n+1) n*(n+1)
(3.6) HE = — = ML =
#{Lfll} =n’, #{M"} = n.

Here, the indices ji, jo, ky satisfy 1 < j1, 2, k1 < n. Similarly as in [Me2004], to

transform the system (3.2) in a true complete system, let us introduce functions Hfll j, Of
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(2, y), where 1 < ji, jo, ky < n+ 1, which satisfy the symmetry Hfll iy = Hfll ;> and let
us introduce the followmg first auxiliary system:

k1 k1 k1 k1 kl _
(3 7) ijlxj2 7 H]l J2? |:|:r:ﬂly o H]l n+1» |:| 1_In-‘y-l n+1
: Dn—H _ 1n+l Dn—l—l _ 1n+1 Dn—i—l _ Hn+1
ilgi2 T TTjL,j20 xly Ji,n+1s = tntlndle

It is complete. The necessary and sufficient conditions for the existence of solutions X L
Y follow by cross differentiations.

Lemma 3.8. For all ji,js, 53, k1 = 1,2,...,n + 1, we have the cross differentiation
relations
n+1 n+1
k1 k1 _ ko k1 ko
(39) (Dmflacm)mh - (ijliS xi2 Z Da:flacm DmJSxk2 + Z Da:flacJS m]21k2'
k?2 1 kQ 1

The proof of this lemma is exactly the same as the proof of Lemma 3.40 in [Me2004].

As a direct consequence, we deduce that a necessary and sufficient condition for the
existence of solutions Hfl to the first auxiliary system is that they satisfy the following
compatibility partial dlfferentlal relations:

kl k1 n=1
(3 10) gl Ji.j2 aH]le — _ Hkg o H . kl
’ Oxis Oz Z J1.d2 33 ko § : J1.J3 Jg,lcz’
ko=1 ko=1

foralljl,jQ,jg,kl = 1, N S 1.
We shall have to specify this system in length according to the splitting {1,2,...,n}
and {n + 1} of the indices of coordinates. We obtain six families of equations equivalent
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to (3.10) just above:

(3.11)
p
n+1 o n+1 o ko n+1 n+1 n+1
(Hj17j2>a;j3 (Hj17j3);1;j2 - Z H]l J2 Js,k2 H]1 \J2 H]37n+1+
ko=1
ko n+1 n+1 n
Z H]l ,J3 ]27162 H]1,]3 ng,n+1>
ko=1
n+1 n o ko n+1 n+1 rn+
(Hjl,Jz) (HJ1,n+l)xJ'2 - 2 : H]l \J2 n+1,k2 H]l J2 II n+1, N+1+
ko=1
n+1 n+1 n+1
Z H]l n+1 Jz,kz + Hj17n+1 Hj27n+17
ka=1
n+1 n+1 _ § ko n+l 1N n+1
(Hj1,n+1)y o (Hn-i-l,n-i-l)g;jl - Hjl,n+1 Hn+1,k2 H]17n+1 Hn+1 n+l/ +
ko=1
n+1 n+1 n+1
+ E Hn+1 n+1 ]l,kg + Hn+1,n+1 Hgl n+1 )
ko=1
k1 _ k1 _ kl o n+1 k1
(Hj17j2)mj3 (Hjhja)xh - Z HJ17J2 Ja,k2 H]mz H]3Jl+1+
ko=1
ko kl n+1
+ Z HJl WE! J27k2 + H]l J3 HJ2 n+1>
ky=1
k1 k1 — § 1+l Tk
(HJMz)y (Hj1m+1)sz - H]l J2 n+1 ko H]l J2 1L n+1n1
ko=1
ko k1 n+1 k1
+ Z H 1,n+1 Hj2,k2 + Hjl,n-H sz,n-t-l?
ko=1
_ k1 _ 1ntl k1
(Hh n+1) (HTL-H n+1)xj1 - Z H]1 n+1 n+1,k2 Hjhn—i-l I n+1, n+1+
ko=1
n+1
+ § Hn+l n+1 ]1 ko Hn+1,n+1 H]l n+1-
k: —
\ 2=

where the indices ji, jo, J3, k1 vary in the set {1,2,1,... ,n}.

3.12. Principal unknowns. As there are (m + 1) more square (or Pi) functions than the

functions G, ;,, H ]kll 2 Lfll and M*, we cannot invert directly the linear system (3.2).

To quasi-inverse it, we choose the (m + 1) specific square functions

(3.13) o' =0L,., o =0

n+l .__ n+1
...... ot =otL L
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calling them principal unknowns, and we get the quasi-inversion:

(3.14)
( Hk1 _ Dkl _ H/ﬂ 1 5k1 sz 1 5191 Hjl 1 (5k1 @jz 1 5k1 @j1
Judz T Taitaiz T Tgngz 9 Ui Hizgz T 9 Uiz Ting + 9 i + 9 "2 )
1 1
k _ Mk o k k n+1
M = 08, = S L+ 500 6,
k k k
Hn{i-l,n-i-l = Dyé =M 17
n+1 n+1
Hj:Jé = Dmﬂtmﬂé = _Gjhjw
1 . 1 .
n+1 o n+1 __ J
L Hjl,n-i—l - D:Ejly - _5 Hjll,h + 5 .

3.15. Second auxiliary system. Replacing the five families of functions Hfll o ffn 1

Hﬁil,n 1 H;ijlz H?:; 41 by their values obtained in (3.14) just above together with the

principal unknowns

(3.16) Hﬁd‘l = @jl’ H:zli%,n—l—l = @n—H’
in the six equations (3.11)1, (3.11)2, (3.11)3, (3.11)4, (3.11)5 and (3.11)g, after hard
computations that we will not reproduce here, we obtain six families of equations. From
now on, we abbreviate every sum ), _, as »_, .

Firstly:

_ o ) ) k1 ) k1
(3.17) 0= Gj1,j2,:v13 Gj1,j3,w32 + E : st,kl Hjl,jz E : GDJﬂ Hjl,jg'
k’l kl

This is (I') of Theorem 1.7. Just above and below, we plainly underline the monomials
involving a first order derivative. Secondly:

. .
@?Jz = =2 Gjhjz,y + H]]';jl,sz_'_
1 . .
k k k
- Z Gj27k1 Lj11 t 2 HJJ&lJi H]J227j2 o Z Hj117j2 HkllJﬂ_
k k
(3.18) 1 L1 oL h o
n+ j j
- Gjl:jQ © - 5 Hjjil,jl o7 - 5 HJJ';,JQ o + Z Hj11,j2 O+
k1
leien,
\ 2
Thirdly:
( 1 . 1 .
n+1 _
_@ggh + 5 9?;1 - 5 Hjj'll,jhy_
1
k k k
(3.19) =2 G MU+ D Hig L
kl k‘l
+ lHjl @nJrl . 1 Z Lkl @/ﬂ _ 1@]& @n+1
4 J1,J1 4 J1 4 )
\ k1




LIE SYMMETRIES AND CR GEOMETRY 111
Fourtly:
(3 2())
5k1 @]2 o 5k1 @]3 4= (5k:1 @]1 o 5k:1 @]1 _

2 J1 I3 2 J1 2 2 J2 xI3 2 J3 xI2

_ gk Ky ki g ki pr
o Hj1 J2,273 + Hjl Jswiz 2 531 ]3 J37$J2 T3 2 531 J2,J2 xd3
k1 kl _
2 533 HJl J1,272 T3 2 632 HJ1731,$]3
N lG Lk1 + G Lk — 5k1 HY . g2 4= 5k1 Hr g
2 J1,J2 J1,J3 J2 4 73 J1,J1 J2,J2 4 J2 J1,J1 73573

_ ko kv~ kl k1 ko
Z J1 2J2 J3 kz Z H]l ,J3 Jz,kQ 9 6]2 317]5 sz ko +5 9 5]3 J17J2 sz,kz

k1 n+1 k1 n+1
5 Gjuj:‘s@ (5 Gj1,j2® -

2 J2 J3
4 5321 Hjjll J1 0% + - 4 5J3I HJ]11 J1 0% — 4 5]21 HJJS 73 e + 4 5131 HJ]22 J2 o7 —
k k k k
o ST HE L Ob g Lt Sl o
kl kl
- 55; O e+ 4 5’“1 CUNCES
\
Fifthly:
(3. 21)
4

5161 @Jz 4= 5k1 @]1 _ 5k1 o+l —

2 J1 92 J2 2 n xI2

. k1 _E k1 k2__§ k2 kl__ k1§ ko ko
- G317J2 M™ + 9 H317k2 L HJ17]2 ko 4 5]2 HkQ,kz le

Lot g gty Lgh ZL’“Q @’f2+ L s i gt

4R 4 2 1 %%
Sixthly:
( 5;?11 @ZH M—f‘
(3.22) 2D Hi M =0 D B, M - 5 > il

k1 k2 O k2 k1 gn+1 n+1
+65 Y M e +25ﬂ@ o

\ k2

3.23. Solving O’ Tas Oy ©"'! and ©7*!. From the six families of equations (3.17),

(3.18), (3.19), (3.20), (3 21) and (3. 22) we can solve 6)]]2, o, @Z;ql and ©)*". Not
mentioning the (hard) intermediate computations, we obtain firstly:
(3.24)

Jji l - ]1 o
@xm - Ghd?vy +H 31 Jj1,292 + Z GJ% L + Jl J1 Jz,Jz Z 31792

n 1 1 2 1 1 j2
J1,J2 @ - HJl,Jl @J Hj GJ Z J1,J2 Gl T E @j ®j '

2 J2,J2

-G
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Secondly:
(3.25)
( 1 2

1 __ l l
@jy——5H31J1y+§L]1I]1+3G]1]1M + 5 ZGth__ZHll

2 1 ! 1 1 nl ! !
+§ZHJJllL __Z Jlle] __Hjjlj1@+ ZL ©'+
l

L lenem
2

\

Thirdly:
(3 26) .

2 2 4 1
(o= _Zgh o 5 G M7+ Z G M~ 3 Z H, L

3 J1,J1,y 3 j1,z91

+3 Z J];lLl __Z J1J1L{1_ Hjj;ﬁ@nﬂ_'_ ZLZ @l

—@jl (S
0 + 2
Fourtly:
n+1 1 1 1 l l l 1
oytt =L} +2M) +2ZHJ]11M ZH”M——ZL L'+
(3.27)

INaY) n+1 n+1
+ZM@+§® ot
l

These four families of partial differential equations constitute the second auxiliary system.
By replacing these solutions in the three remaining families of equations (3.20), (3.21)
and (3.22), we obtain supplementary equations (which we do not copy) that are direct
consequences of (I'), (IT*), (IIT"), (IV”).

To complete the proof of the main Lemma 3.3 above, it suffices now to establish the
first implication of the following list, since the other three have been already established.

e Some given functions G, j,, H Jkll o L and M*™ of (21, y) satisfy the four fami-

lies of partial differential equations (I'), (II’), (IIT") and (IV’) of Theorem 1.7.

Y

e There exist functions ©7t, ©"! satisfying the second auxiliary system (3.24),
(3.25), (3.26) and (3.27).

Y

e These solution functions ©71, ©""! satisfy the six families of partial differential
equations (3.17), (3.18), (3.19), (3.20), (3.21) and (3.22).

Y

e There exist functions Hfll j, Of (2, y), 1 < j1, jo, k1 < m + 1, satisfying the first
auxiliary system (3.7) of partial differential equations.

Y

e There exist functions X%, Y of (z%,y) transforming the system 1, ,» =
Fiviz(gh gy 0,), 41,52 = 1,...,n, to the simplest system Yy, xin = 0,

jlajl :17"'an'

3.28. Compatibility conditions for the second auxiliary system. We notice that the
second auxiliary system is also a complete system. Thus, to establish the first above
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implication, it suffices to show that the four families of compatibility conditions:

O (@;:132)3313 <@JIIJ3)xj2 3
0= @jlj — (e71) 7
(3.29) ( T 2)y ( Y )xaz
0 (Gm_l)xh (®n+1)le )
0= (

xI1 xJ2

— @n—_i—l)y o ((_)Z—i—l)

zi2

are a consequence of (I), (I”), (IIT"), (IV”).

For instance, in (3.29);, replacing @i }, by its expression (3.24), differentiating it with
respect to 272, replacing @i ., by its expression (3.24), differentiating it with respect to 272
and substracting, we get:

(3. 30)

(

—2 G]l J2.yxi3 + 2 Gjl ,J3,yTI2 + H Hjl T

J1,J1, 112133 J1,J1,273292

+ @.71 @J2+ @h @Jz . @]1 @]3_ 931 @Jd .

I3 2 ai2
— lHjl o Lghoor 4 lgn eny Ll gn
9 T jn.g1,a73 9 ind Zads T g a2 9 “Tiud a2
1 _ . 4 1 1 . 1
J J J J
D) Hjj,jz,acf3 S 92 ]2 J2 @xlﬂs 92 Hji 3,292 o7 + 9 JB 73 @xlﬂz
- Gj17j2756j3 @nJrl o G]l:JZ @Zjal + GJ1 J3,292 @n+1 + G]17]3 @ngl
l l
Z J1,J2,093 O + Z Ji J2 Z J17]37l‘32 Z J1,J3 ®ocj2+
l
1 J2 1 J1 J2 1 J1 J3 1 J1 J3
+—H H? +-H' H? . —-—H'" . H?. ——-—H"'' H’

2 vgrals T2z g Tindt Phagaals g T etz asds 9 T T s gs,ai2

N Z J1,J2,273 Hll § : J1.52 llmJS + § : 71,5392 Hll + § : J1.93 ll:vﬂ+
+ GjZ,lusz L]l + Gijl le,xj3 - Gj37l7xj2 L,]l - GjBul le,CCjQ :
l l l l

Next, replacing the twelve first order partial derivatives underlined just above:

Ji J2 Ji VES J2 73
331) O Ouns  Ouny On,,  Op,, 04,
' J1 J1 n+1 n+1 l l
@xﬂd’ qu’ @xu ’ @xaz ) @$337 @sz
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by their values issued from (3.24), (3.26) and adapting the summation indices, we get the
explicit developed form of the first family of compatibility conditions (3.29);:

(3.32)
(0="=

\

—2G,; +2G,

J1.J3,@92y

E Tl E ol J3 o J2
- Gjaal@” Lj1 + Gj27lﬂ»’]3 Lj1 G]hjz Y H]s J3 + G]1v13 Y HJz J2
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Lemma 3.33. ([M62003, Me2004]) This first famzly of compatibility conditions for the
second auxiliary system obtained by developing (3.29); in length, together with the three
remaining families obtained by developing (3.29)s, (3.29)3, (3.29)4 in length, are con-
sequences, by linear combinations and by differentiations, of (I'), (II’), (II"), (IV’), of
Theorem 1.7.

The summarized proof of Theorem 1.7 is complete. 0
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