The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces M^3 in C^2 - Université Paris-Saclay Access content directly
Journal Articles Izvestiya: Mathematics Year : 2014

The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces M^3 in C^2

Abstract

We develop the Cartan equivalence problem for Levi-non- degenerate $\mathcal C^6$-smooth real hypersurfaces $M^3$ in $\mathbb C^2$ in great detail, performing all computations effectively in terms of local graphing functions. In particular, we present explicitly the unique (complex) essential invariant $\mathfrak{J}$ of the problem. Comparison with our previous joint results [1] shows that the Cartan–Tanaka geometry of these real hypersurfaces perfectly matches their biholomorphic equivalence.
Fichier principal
Vignette du fichier
Cartan-M3-C2.pdf (283.72 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03286249 , version 1 (17-07-2021)

Identifiers

Cite

Joël Merker, Masoud Sabzevari. The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces M^3 in C^2. Izvestiya: Mathematics, 2014, 78 (6), pp.1158-1194. ⟨10.1070/IM2014v078n06ABEH002725⟩. ⟨hal-03286249⟩
10 View
23 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More