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ABSTRACT. We study the local equivalence problem for real-analytic (Cω) hypersurfaces M5 ⊂ C3 which, in some holo-
morphic coordinates (z1, z2, w) ∈ C3 with w = u+

√
−1v, are rigid in the sense that their graphing functions:

u = F (z1, z2, z1, z2)

are independent of v. Specifically, we study the group Holrigid(M) of rigid local biholomorphic transformations of the form:(
z1, z2, w

)
7−→

(
f1(z1, z2), f2(z1, z2), aw + g(z1, z2)

)
,

where a ∈ R\{0} and D(f1,f2)

D(z1,z2)
6= 0, which preserve rigidity of hypersurfaces.

After performing a Cartan-type reduction to an appropriate {e}-structure, we find exactly two primary invariants I0
and V0, which we express explicitly in terms of the 5-jet of the graphing function F of M . The identical vanishing 0 ≡
I0(J5F ) ≡ V0(J5F ) then provides a necessary and sufficient condition for M to be locally rigidly-biholomorphic to the
known model hypersurface:

MLC : u =
z1z1 + 1

2 z
2
1z2 + 1

2 z
2
1z2

1− z2z2
.

We establish that dimHolrigid(M) 6 7 = dim Holrigid(MLC) always.
If one of these two primary invariants I0 6≡ 0 or V0 6≡ 0 does not vanish identically, then on either of the two Zariski-

open sets {p ∈ M : I0(p) 6= 0} or {p ∈ M : V0(p) 6= 0}, we show that this rigid equivalence problem between rigid
hypersurfaces reduces to an equivalence problem for a certain 5-dimensional {e}-structure on M , that is, we get an invariant
absolute parallelism onM5. Hence dim Holrigid(M) drops from 7 to 5, illustrating the gap phenomenon.

Dedicated to Alexander Isaev†, in memoriam

1. Introduction

In 1907, Poincaré [31] gave a heuristic counting argument to show that real analytic
hypersurfaces in C2 possess infinitely many local invariants under biholomorphic trans-
formations. This gives rise to the classification problem of real submanifolds in complex
spaces, which still occupies a central place in CR geometry.

The equivalence problem for Levi nondegenerate hypersurfaces in C2 was first solved
by Élie Cartan [1, 2], as an application of his powerful method of equivalence, rooted in
the « Méthode du repère mobile » of Darboux-Ribaucour.

In a landmark paper of 1974, Chern-Moser [5] successfully solved the equivalence
problem for Levi nondegenerate hypersurfaces in Cn in any dimension n > 2, by applying
Cartan’s method of equivalence, as well as Poincaré’s method of normal forms. For a
treatment of both methods, we refer to the book of Jacobowitz [19] and the references
therein. Other approaches to solving the equivalence problem in CR Geometry were also
developed earlier by Tanaka [37], and later by Čap-Slovák [3] using parabolic geometry.

The classification and equivalence problems of Levi degenerate hypersurfaces in com-
plex spaces are much less understood than the non-degenerate case. The task of identifying
suitable higher non-degeneracy conditions was first considered by Freeman [11], and the
modern language speaks of ‘2-nondegeneracy’. An elementary self-contained presentation
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of foundational aspects is available in [28], and will be enough for our purposes in this
paper.

The appropriate setting for equivalence problem of degenerate hypersurfacesM5 ⊂ C3

has been determined to be the class of real analytic 5-dimensional 2-nondegenerate real
hypersurfaces in C3 of constant Levi rank 1, which we denote by C2,1 using the nota-
tion of Fels-Kaup. It is intermediate between the well-understood class of products of
3-dimensional hypersurfaces and C, and the class of general 5-dimensional hypersurfaces
in C3. First investigations of this class started in the late 1990’s, and in 2008, Fels-Kaup [7]
gave a complete classification of homogenous models. Merker-Nurowski [25, 26] recently
extended these results to the more general para-CR context, cf. also [29].

For this C2,1 class, an {e}-structure was constructed by Isaev-Zaitsev [17] and even
better, a Cartan connection by Medori-Spiro [21, 22] — for not necessarily embedded CR
manifolds. Effective computations have been conducted independently in the thesis [30,
27] of Pocchiola, who ‘discovered’ two explicit primary invariants W0 and J0, now known
as Pocchiola invariants. Foo-Merker [8] completed the {e}-structure, and confirmed the
existence of these invariants.

We also refer the readers to our recent treatment [9] of the classification problem for this
class by Moser’s method of normal form. As for degenerate hypersurfaces in Cn, n > 4,
the classification problem is widely open, and to the best of our knowledge, the works of
Porter [32], and Porter-Zelenko [33] are the only treatments of the equivalence problem of
7-dimensional hypersurfaces in C4, and higher dimensional cases seem to be completely
unexplored.

In this paper, we solve the equivalence problem for a special class of real analytic 5-
dimensional 2-nondegenerate rigid hypersurfaces M5 ⊂ C3 of constant Levi rank 1 under
the action of rigid transformations, and we obtain two primary invariants. This is the first
step towards a solution to the classification problem for this class of hypersurfaces, which
is accomplished in our joint paper with Chen [4]. The class of rigid hypersurfaces was
introduced by the late Isaev in his investigations [13, 14, 15, 16] of Pocchiola’s invariants.
This allows for a lot of simplifications in comparison with the case of general Levi degen-
erate hypersurfaces, while still giving rise to an interesting theory. There are also studies on
rigid CR manifolds in other settings, such as rigid Levi non-degenerate real hypersurfaces
in Cn+1 by Stanton [35, 36] and rigid spheres by Ezhov-Schmalz [6].

More precisely, a hypersurface M5 in C3 with coordinates (z1, z2, w = u + i v) is
called rigid if there is a vector field of the form T = X + X tangent to M, where X is a
nonzero holomorphic vector field, such that TM = T cM ⊕ RT . One can apply a local
biholomorphic straightening transformation to obtain X = i ∂

∂w and X + X = 2 ∂
∂v . It

follows that M can be written as graph:

M5 : u = F (z1, z2, z1, z2),

with a C ω function F independent of v. The rigid equivalence problem is studied under
the action of rigid biholomorphic transformations, of the form:

(z1, z2, w) 7−→
(
f(z1, z2), g(z1, z2), aw + h(z1, z2)

)
,

where f , g, h are holomorphic, independently of w, and where a ∈ R∗. Section 2 gives
more details.

Our main tool is Cartan’s method of equivalence, and we refer our readers to [34, 18]
for a presentation. For a given CR manifold M , this method constructs a principal bundle
π : P −→M and a coframe of everywhere linearly independent 1-forms θ1, . . . , θdimP on
P such that:
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(1) for any other CR manifold M ′, every CR diffeomorphism Φ: M −→ M ′ lifts
uniquely to a diffeomorphism Π: P −→ P ′ satisfying Π∗θ′

i
= θi for 1 6 i 6

dimP , where P ′ and the θ′i’s are also constructed from M ′ by Cartan’s method of
equivalence;

(2) conversely, every diffeomorphism Π: P −→ P ′ commuting with projections π,
π′ whose horizontal part is a diffeomorphims Φ : M −→M ′ :

P
Π //

π

��

P ′

π′

��
M

Φ
// M ′

which also satisfies Π∗θ′
i

= θi for 1 6 i 6 dimP , has a horizontal part Φ a CR
diffeomorphism.

In practice, as is the case in this paper, Cartan’s method of equivalence is computation-
ally intensive. Carrying out the method is a long, demanding and nontrivial task.

The very first step in investigating equivalence problems is to determine the homoge-
neous models for the class under consideration. In our case, it is the well-known tube over
the future light cone:

Re(z1)2 + Re(z2)2 = u2
(u> 0),

whose Lie algebra was determined by Gaussier-Merker [10], and Fels-Kaup [7] to be
the 10-dimensional so(2, 3,R). The following equivalent hypersurface, discovered by
Gaussier-Merker [10], will be more useful for our purpose:

MLC : u =
z1z1 + 1

2 (z2
1z2 + z2

1z2)

1− z2z2
.

The Lie algebra of CR infinitesimal rigid automorphism will be determined in Section 2.
Our first result is the following:

Theorem 1.1. The equivalence problem under local rigid biholomorphisms of C ω rigid
real hypersurfaces {u = F (z1, z2, z1, z2)} in C3 whose Levi form has constant rank 1
and which are everywhere 2-nondegenerate reduces to classifying {e}-structures on the
7-dimensional bundle M5 × C equipped with coordinates (z1, z2, z1, z2, v, c, c) together
with a coframe of 7 differential 1-forms:

{ρ, κ, ζ, κ, ζ, α, α},

which satisfy invariant structure equations of the shape:

dρ = (α+ α) ∧ ρ+
√
−1κ ∧ κ,

dκ = α ∧ κ+ ζ ∧ κ,

dζ = (α− α) ∧ ζ +
1

c
I0 κ ∧ ζ +

1

cc
V0 κ ∧ κ,

dα = ζ ∧ ζ − 1

c
I0 ζ ∧ κ+

1

cc
Q0 κ ∧ κ+

1

c
I0 ζ ∧ κ,

conjugate equations for dκ, dζ, dα being understood.
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The two primary invariants are explicitly given by

I0 := −1

3

K (L 1(L 1(k)))

L 1(k)2
+

1

3

K (L 1(k))L 1(L 1(k))

L 1(k)3

+
2

3

L1(L1(k))

L1(k)
+

2

3

L1(L1(k))

L 1(k)
,

V0 := −1

3

L 1(L 1(L 1(k)))

L 1(k)
+

5

9

(
L1(L 1(k))

L 1(k)

)2

−

− 1

9

L 1(L 1(k))P
L 1(k)

+
1

3
L 1(P)− 1

9
PP,

while the secondary invariant is

Q0 := −1

2
L 1(I0) +

1

3

(
P− L1(L1(k))

L1(k)

)
I0 +

1

6

(
P− L 1(L 1(k))

L 1(k)

)
I0 +

1

2

K (V0)

L 1(k)
.

It will be shown that Q0 is real-valued, see equation (7.7). We refer the readers to the
next section for the definitions of the vector fields {L1,K }, and of the functions {P,k}.

Both I0 and V0 vanish identically for the Gaussier-Merker model MLC, and it is a
fundamental theorem in Cartan theory [34, 18] that the identical vanishing of all invariants
provides constant coefficients Maurer-Cartan equations of a uniquely defined Lie group.

Theorem 1.2. A 2-nondegenerate C ω constant Levi rank 1 local rigid hypersurfaceM5 ⊂
C3 is rigidly biholomorphic to the model MLC if and only if

0 ≡ I0 ≡ V0. �

A basis for the Maurer-Cartan forms on the local Lie group Holrigid(MLC) is provided by
7-differential 1-forms:

{ρ, κ, ζ, κ, ζ, α, α},

where ρ = ρ is real, which enjoy the 7 structure equations with constant coefficients:

dρ = (α+ α) ∧ ρ+
√
−1κ ∧ κ,

dκ = α ∧ κ+ ζ ∧ κ, dκ = α ∧ κ+ ζ ∧ κ,
dζ = (α− α) ∧ ζ, dζ = (α− α) ∧ ζ,
dα = ζ ∧ ζ, dα = ζ ∧ ζ.

On the other hand, one can also obtain the same solution to the equivalence problem
for MLC using the vector fields method giving the Gaussier-Merker list.

Proposition 1.3. For the model hypersurface:

MLC : u =
z1z1 + 1

2 (z2
1z2 + z2

1z2)

1− z2z2
,
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the Lie algebra holrigid(MLC) of infinitesimal rigid biholomorphisms is 7-dimensional, gen-
erated by:

X1 =
√
−1∂w,

X2 = z1∂z1 + 2w∂w,

X3 =
√
−1z1∂z1 + 2

√
−1z2∂z2 ,

X4 = (z2 − 1)∂z1 − 2z1∂w,

X5 = (
√
−1 +

√
−1z2)∂z1 − 2

√
−1z1∂w,

X6 = z1z2∂z1 + (z2
2 − 1)∂z2 − z2

1∂w,

X7 =
√
−1z1z2∂z1 + (

√
−1z2

2 +
√
−1)∂z2 −

√
−1z2

1∂w.

Let (∂ρ, ∂κ, ∂ζ , ∂α, ∂κ, ∂ζ , ∂α) be vector fields that are respective duals to the Maurer-
Cartan 1-forms (ρ, κ, ζ, α, κ, ζ, α) in Theorem 1.2. Then there is an isomorphism of Lie
algebras between the Lie algebra generated by {∂ρ, ∂κ, ∂ζ , ∂α, ∂κ, ∂ζ , ∂α} and the Lie
algebra generated by {X1, X2, X3, X4, X5, X6, X7}.

Next, when either I0 6≡ 0 or V0 6≡ 0, we may restrict considerations to either of the
Zariski-open subsets {p ∈ M : I0(p) 6= 0} or {p ∈ M : V0(p) 6= 0}, where one may
perform Cartan’s method of equivalence and obtain the following

Theorem 1.4. Let M5 ⊂ C3 be a local rigid 2-nondegenerate C ω constant Levi rank 1
hypersurface. If either I0 6= 0 or V0 6= 0 everywhere on M , the local rigid-biholomorphic
equivalence problem reduces to an invariant 5-dimensional {e}-structure on M .

In fact, once the last remaining group parameter c ∈ C∗ is seen to be normalizable
from either:

1

c
I0 = 1 or

1

cc
V0 = 1,

the proof is completed if one does not require to make explicit the {e}-structure on M .
Because of the complexity of computations, we will not attempt to set up such an explicit
{e}-structure.

From general Cartan theory, we deduce the

Corollary 1.5. All rigid M5 ⊂ C3 that are not rigidly-biholomorphic to the model MLC

satisfy
dim Holrigid(M) 6 5.

Let us now briefly explain how our rigid real analytic C2,1 hypersurfaces M5 ⊂ C3

can be equipped with a Cartan geometry, whatever J0, V0 are. This is analogous to the
Cartan connection construced by Medori-Spiro [21, 22].

Historically, Élie Cartan introduced the notion of "espaces généralisés", first in the
context of Riemannian geometry, then in the widest possible universe of arbitrary homoge-
neous spaces X = G/H , where G is a connected Lie group, H ⊂ G is a closed connected
Lie subgroup, with Lie algebras h ⊂ g. In today’s language, a Cartan-like ‘generalised
space’ is conceptualized as a certain g-valued differential 1-form ω which constitutes a
Cartan connection on a certain H-principal bundle P over a manifold M equipped with
the right action Rh : g 7→ gh for h ∈ H and g ∈ G, subjected to following three key
conditions:

(1) ωp : TpP → g is an isomorphism at each point p ∈ P ;
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(2) for every y ∈ h, if

Y +
∣∣
p

=
d

dt

(
p exp(ty)

)∣∣
t=0

,

then ω(Y +) = y;
(3) at every p ∈ P , for every vp ∈ TpP , one has

ωph
(
Rh∗(vp)

)
= Ad(h−1)[ωp(vp)].

The Cartan connection for the homogeneous space M := G/H with the bundle P :=
G, satisfies Maurer-Cartan structure equation:

0 = dω + 1
2 [ω ∧ ω].

In general, Cartan’s structure equation involves the curvature:

Ω := dω + 1
2 [ω ∧ ω].

In our case, a general rigid real analytic C2,1 manifold is modelled on the tube over the
future light cone MLC. Cartan’s equivalence method realises MLC as a homogenous space
G7/H2, where g is generated by the vector fields {∂α, ∂α, ∂ρ, ∂κ, ∂ζ , ∂κ, ∂ζ}, and H2 is
the two dimensional isotropy subgroup.

From the structure equations of Theorem 1.1, it is easy to construct a g-valued 1-form
ω satisfying the three conditions of being a Cartan connection (details will be skipped).

Theorem 1.6. Associated to every rigid C2,1 local C ω hypersurface M5 ⊂ C3, there is a
canonical Cartan connection modelled on the homogeneous space G7/H2 = MLC .

In continuation with these results, a further problem appears: to classify up to rigid
biholomorphisms the ‘submaximal’ hypersurfaces with dim Holrigid(M) = 5 whose rigid
biholomorphic group is locally transitive. Another question would be to classify under
rigid biholomorphisms those rigid M5 ⊂ C3 that have identically vanishing Pocchiola
invariants 0 ≡ W0 ≡ J0, hence which are equivalent to MLC, but under a general biholo-
morphism, not necessarily rigid. Upcoming publications will be devoted to advances in
these directions.

The remainder of the article is devoted to prove Theorem 1.1.
Acknowledgement: The authors address grateful thanks to an anonymous referee for

insightful comments and precious geometric ideas.

2. Geometry of Levi rank 1 real hypersurfaces M5 ⊂ C3

In appropriate affine coordinates (z1, z2, w) ∈ C3 with w = u+
√
−1v, a real-analytic

(C ω) real hypersurfaceM5 ⊂ C3 may locally be represented as the graph of a C ω function
F over the 5-dimensional real hyperplane Cz1 × Cz2 × Rv . When F is independent of v:

M : u = F (z1, z2, z1, z2),

the hypersurface is called rigid.
Its fundamental CR-bundle:

T 1,0M :=
(
C⊗R TM) ∩ T 1,0C3

is of complex rank 2 = CRdimM , as well as its conjugate T 0,1M = T 1,0M .
Relevant foundational material for CR geometry focused on the local biholomorphic

equivalence problem of C ω CR submanifoldsM ⊂ CN has been set up in the memoir [28].
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The Levi forms at various points p ∈ M are maps measuring Lie bracket non-
involutivity [28, p. 45]:

T 1,0
p M × T 1,0

p M −→ C ⊗R TpM mod
(
T 1,0
p M ⊕ T 0,1

p M
)
,(

Mp, Np

)
7−→ √

−1
[
M , N

]∣∣
p

mod
(
T 1,0
p M ⊕ T 0,1

p M
)
,

where M and N are any two local sections of T 1,0M defined near p which extend Mp =
M
∣∣
p

and Np = N
∣∣
p
, the result being independent of extensions.

Levi forms are known to be biholomorphically invariant. In terms of two natural in-
trinsic generators for T 1,0M :

L1 :=
∂

∂z1
− √−1Fz1

∂

∂v
and L2 :=

∂

∂z2
− √−1Fz2

∂

∂v
,

the Levi forms at all points p ∈M identify with the matrix-valued map:

LFM (p) := 2

(
Fz1z1 Fz2z1
Fz1z2 Fz2z2

)
(p).

Throughout this article, we will make two main (invariant) assumptions. The first one is
that the rank of LFM (p) be constant equal to 1 at every point p ∈M .

Since 2 = rank T 1,0M , this implies that there is a rank 1 Levi kernel subbundle:

K1,0M ⊂ T 1,0M,

which is generated by the vector field:

K := kL1 + L2,

incorporating the slant function:

k := −Fz2z1
Fz1z1

.

Indeed, a direct check convinces that both [K , L 1] and [K , L 2] vanish mod-
ulo T 1,0M ⊕ T 0,1M . The known involutivity properties of the Levi kernel subbundle
K1,0M ⊂ T 1,0M together with its conjugate K0,1M ⊂ T 0,1M then read as (see [28, pp.
72-73]): [

K1,0M, K1,0M
]
⊂ K1,0M,[

K0,1M, K0,1M
]
⊂ K0,1M,[

K1,0M, K0,1M
]
⊂ K1,0M ⊕ K0,1M.

Another fundamental function will also be needed in a while:

P :=
Fz1z1z1
Fz1z1

.

All this justifies the introduction of the so-called Freeman form ([28, p. 89]):

K1,0
p M ×

(
T 1,0
p M mod K1,0

p M
)
−→ T 1,0

p M ⊕ T 0,1
p M mod

(
K1,0
p M ⊕ T 0,1

p M
)
,(

Kp, Lp

)
7−→

[
K , L

]∣∣
p

mod
(
K1,0
p M ⊕ T 0,1

p M
)
,

where K and L are any two local sections ofK1,0M and of T 1,0M defined near p which
extend Kp = K |p and Lp = L |p, the result being independent of extensions. In bases,
these Freeman forms at various points p ∈ M are simply maps C × C −→ C. They are
known to be biholomorphically invariant [28].

Our second main (invariant) assumption will be that the rank of the Freeman form be
maximal equal to 1 at every point p ∈M . Such manifolds M are called 2-nondegenerate.
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A computation:

(2.1)

[
K ,L 1

]
=
[
kL1 + L2,L 1

]
= −L 1(k)L1 + k

[
L1,L 1

]
+
[
L2,L 1

]
◦

= −L 1(k)L1

shows that

M is 2-nondegenerate at p ∈M ⇐⇒ L 1(k)(p) 6= 0.

2.2. The initial Darboux-Cartan structure. The differential 1-form

ρ0 = dv +
√
−1Fz1 dz

1 +
√
−1Fz2 dz

2 − √−1Fz̄1 dz̄
1 − √−1Fz̄2 dz̄

2

has kernel

kerρ0 = {ρ0 = 0} = T 1,0M ⊕ T 0,1M.

If M is not Levi-flat, after a suitable change of coordinates in the (z1, z2)-space, we may
assume without loss of generality that:

ρ0

(√
−1[L1,L 2]

)
= 2Fz1z̄1 6= 0

everywhere on M , and hence the vector field

T :=
√
−1[L1,L 1] = 2Fz1,z̄1

∂

∂v
:= `

∂

∂v

vanishes nowhere on M .
In the rigid case, a direct calculation shows that

L1(k) = −−Fz1,z̄1Fz2z̄1z1 + Fz2z̄1Fz1z̄1z1
(Fz1z̄1)2

,

L 1(k) =
−Fz1z̄1Fz2z̄1z̄1 + Fz2z̄1Fz1z̄1z̄1

(Fz1z̄1)2
,

T (k) = 0.

Moreover, we will invoke the following:

Lemma 2.3. [See Pocchiola [30] or Foo-Merker [8]] The following 3 functional identities
hold on M :

K (k̄) ≡ 0,

K (P) ≡ −PL1(k)−L1(L1(k)),

K (P) ≡ −PL 1(k)−L 1(L1(k)).

According to Pocchiola [30, p. 37], there are 10 Lie bracket identities

[T ,L1] ≡ −PT ,

[T ,K ] ≡ L1(k)T + 0,

[T ,L 1] ≡ −PT ,

[T ,K ] ≡ L 1(k)T + 0,

[L1,K ] ≡ L1(k)L1,

[L1,L 1] ≡ √−1T ,

[L1,K ] ≡ L1(k)L 1,

[K ,L 1] ≡ −L 1(k)L1,

[K ,K ] ≡ 0,

[L 1,K ] ≡ L 1(k)L 1,
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where the "+0" is deliberately added to show the difference from the general case. The
following 1-forms

ρ0 =
1

`

(
dv −A1dz1 −A2dz2 − Ā1dz̄1 − Ā2dz̄2

)
,

κ0 = dz1 − kdz2,

ζ0 = dz2,

κ̄0 = dz̄1 − k̄dz̄2,

ζ̄0 = dz̄2,

are, by a simple computation, dual to the corresponding vector fields T , L1, K , L 1, K .
In terms of these new vector fields and 1-forms, the exterior differential of any C ω function
G = G(z1, z2, z1, z2, v) rewrites simply as

(2.4) dG = T (G) ρ0 + L1(G) κ0 + K (G) ζ0 + L 1(G) κ0 + K (G) ζ0.

Using the Lie-Cartan formula which states that for any smooth vector fields X , Y and
any differential 1-form ω, one has

dω(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]),

the initial Darboux-Cartan structure equations are therefore obtained

dρ0 = P ρ0 ∧ κ0 −L1(k) ρ0 ∧ ζ0 + P ρ0 ∧ κ̄0 −L 1(k̄) ρ0 ∧ ζ̄0 +
√
−1κ0 ∧ κ̄0,

dκ0 = −L1(k) κ0 ∧ ζ0 + L 1(k) ζ0 ∧ κ̄0,

dζ0 = 0.

Here, conjugate equations for dκ0 and for dζ0 are not written, as they can be immediately
deduced.

By anticipation, let us state that Cartan’s method will force us to replace the three
independent 1-forms {ρ0, κ0, ζ0}, first by {ρ0, κ0, ζ̂0}, next by {ρ0, κ0, ζ

′
0}, and that we

will have to calculate more complicated initial structure equations.

3. Initial G-structure for rigid equivalences
of rigid real hypersurfaces

Our objective is to study the equivalence problem of rigid hypersurfaces under rigid
biholomorphic transformations.

Définition 3.1. Two local C ω rigid real hypersurfaces M5 ⊂ C3 and M ′5 ⊂ C′3 are said
to be rigidly equivalent if there exists a (local) biholomorphic map of the form:

ϕ : (z1, z2, w) 7−→
(
f(z1, z2), g(z1, z2), aw + h(z1, z2)

)
=: (z′1, z

′
2, w

′),

sending M to M ′, where a ∈ R× and f , g, h are holomorphic of (z1, z2) only.

The interest, advocated by Stanton and by Isaev, is that rigid biholomorphisms preserve
rigidity. Indeed, starting from the target rigid hypersurface

w′ + w̄′

2
− F ′(z′1, z′2, z̄′1, z̄′2) = 0,

the pullback by ϕ again has rigid defining equation

0 =
w + w̄

2
+

1

a

(1

2
h(z1, z2) +

1

2
h̄(z̄1, z̄2)− F ′

(
f(z1, z2), g(z1, z2), f̄(z̄1, z̄2), ḡ(z̄1z̄2)

))
.
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Since ϕ is holomorphic, its differential ϕ∗ : CTC3 → CTC′3 stabilises the holomor-
phic (1, 0) and the anti-holomorphic (0, 1) vector bundles

ϕ∗T
1,0M ⊆ T 1,0M ′,

ϕ∗T
0,1M ⊆ T 0,1M ′.

Furthermore, by the invariance of the Freeman forms, ϕ∗ also respects the Levi kernel
bundles

ϕ∗K
1,0M ⊂ K1,0M ′.

Consequently, there exist functions f ′, c′, e′ on M ′ such that

(3.2)
ϕ∗(K ) = f ′K ′,

ϕ∗(L1) = c′L ′1 + e′K ′.

Next, if R′(z′1, z
′
2, z̄
′
1, z̄
′
2, v
′) is any C ω function on M ′, then by definition of the push-

forward of a vector field, with T = `∂v and T ′ = `′∂v′ , we have

(ϕ∗T )
(
R′(z′1, z

′
2, z̄
′
1, z̄
′
2, v
′)
)

= T (R′ ◦ ϕ)

= `
∂

∂v

(
R′

(
f(z1, z2), g(z1, z2), f(z1, z2), g(z1, z2), av + Imh(z1, z2)

))
= a`

∂R′

∂v′
◦ ϕ =

a `

`′ ◦ ϕ

(
`′ ◦ ϕ

∂R′

∂v′
◦ ϕ

)
=

a `

`′ ◦ ϕ
(T ′R′) ◦ ϕ.

Hence, there exists a real-valued function a′ nowhere vanishing on M ′ such that

ϕ∗T = a′T ′.

In fact, this function is determined as a′ = c′c′, since by using (3.2), (2.1), we see that

a′T ′ = ϕ∗T = ϕ∗
(√
−1[L1,L 1]

)
=
√
−1[ϕ∗L1, ϕ∗L 1]

= c′c̄′
√
−1[L ′1,L

′
1] modT 1,0M ′ ⊕ T 0,1M ′.

Summarising, we therefore have the following matrix

ϕ∗


T
L1

K
L 1

K

 =


c′c̄′ 0 0 0 0
0 c′ e′ 0 0
0 0 f ′ 0 0
0 0 0 c̄′ ē′

0 0 0 0 f̄ ′




T ′

L ′1
K ′

L ′1
K
′

 .

Transposing the matrix, we obtain the pullback formula for the two coframes

ϕ∗


ρ′0
κ′0
ζ ′0
κ̄′0
ζ̄ ′0

 =


c′c̄′ 0 0 0 0
0 c′ 0 0 0
0 e′ f ′ 0 0
0 0 0 c̄′ 0
0 0 0 ē′ f̄ ′



ρ0

κ0

ζ0
κ̄0

ζ̄0

 .

In conclusion, for our rigid equivalence problem, the initial G-structure is constituted
by the following 5 by 5 matrices 

cc̄ 0 0 0 0
0 c 0 0 0
0 e f 0 0
0 0 0 c̄ 0
0 0 0 ē f̄

 ,
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with the free complex variables

c, f ∈ C\{0}, e ∈ C.

Henceforth, we will forget about the conjugated 1-form, and the initialG-structure that
we need is represented by the lifted coframe:

ω :=

ρκ
ζ

 :=

cc̄ 0 0
0 c 0
0 e f

ρ0

κ0

ζ0

 =: gω0.

In the next few sections, we will perform reductions of this G-structure by making
suitable changes to the horizontal coframe

(ρ0, ζ0, κ0) −→
(
ρ0, L 1(k)ζ0, κ0

)
−→

(
ρ0, L 1(k)ζ0 + Bκ0, κ0

)
,

where B is a certain function, corresponding to the group reductionscc 0 0
0 c 0
0 e f

 −→
cc 0 0

0 c 0
0 e c

c

 −→
cc 0 0

0 c 0
0 0 c

c

 .

4. Cartan process: first loop

In the exterior derivative of matrix group formula

dω = (dg)g−1ω + gdω0,

the Maurer-Cartan matrix is

(dg)g−1 =

α+ ᾱ 0 0
0 α 0
0 δ ε

 ,

where

α :=
dc

c
, δ :=

de

c
− e

c

df

f
, ε :=

df

f
.

A direct computation gives

(4.1)

dρ = α ∧ ρ+ ᾱ ∧ ρ+

(
P
c

+
eL1(k)

cf

)
ρ ∧ κ+

(
P̄
c̄

+
ēL 1(k̄)

c̄f̄

)
ρ ∧ κ̄

+

(
−L1(k)

f

)
ρ ∧ ζ +

(
−L 1(k̄)

f̄

)
ρ ∧ ζ̄ +

√
−1κ ∧ κ̄,

dκ = α ∧ κ+

(
−L1(κ)

f

)
κ ∧ ζ +

(
− eL 1(k)

c̄f

)
κ ∧ κ̄+

(
cL 1(k)

c̄f

)
ζ ∧ κ̄,

dζ = δ ∧ κ+ ε ∧ ζ +

(
−eL1(k)

cf

)
κ ∧ ζ +

(
−e2L 1(k)

cc̄f

)
κ ∧ κ̄

+

(
eL1(k)

c̄f

)
ζ ∧ κ̄.

Next, we proceed with the absorption by introducing 3× 5 indeterminates

α = α− xρρ− xκκ− xζζ − xκ̄κ̄− xζ̄ ζ̄,
δ = δ − yρρ− yκκ− yζζ − yκ̄κ̄− yζ̄ ζ̄,
ε = ε− zρρ− zκκ− zζζ − zκ̄κ̄− zζ̄ ζ̄.
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By solving a system of linear equations in order to eliminate as many torsion coefficients
as possible in (4.1), we find values of these indeterminates to arrange that

dρ = (α+α) ∧ ρ+
√
−1κ ∧ κ̄,

dκ = α ∧ κ+
cL 1(k)

c̄f
ζ ∧ κ̄,

dζ = δ ∧ κ+ ε ∧ ζ.
Notice that the nowhere vanishing function appearing in dκ

cL 1(k)

c̄f
is an essential (not absorbable) torsion coefficient, so from general Cartan theory, it is
invariant under equivalences, hence it may be normalised to 1 by setting

f :=
cL 1(k)

c̄
.

5. Cartan process: second loop

This normalisation of f conducts us to change our base coframe by introducing

ζ̂0 := L 1(k) ζ0,

so that the new G-structure (without f) and new lifted coframe becomeρκ
ζ

 =

cc̄ 0 0
0 c 0
0 e c

c̄

ρ0

κ0

ζ̂0

 .

In the new coframe
{
ρ0, κ0, ζ̂0

}
, the exterior differential (2.4) of any C ω function G on

M becomes

dG = T (G) ρ0 + L1(G)κ0 +
1

L 1(k)
K (G) ζ̂0 + L 1(G)κ0 +

1

L1(k)
K (G) ζ̂0.

Since both k and L1(k) are independent of v, we have

T (k) ≡ 0, T (L1(k)) ≡ 0.

Borrowing equation (5.5) of Foo-Merker [8] and its proof, or proceeding directly, the
reader will see that the new Darboux-Cartan structure equations become

(5.1)

dρ0 = P ρ0 ∧ κ0 −
L1(k)

L 1(k)
ρ0 ∧ ζ̂0 + P ρ0 ∧ κ̄0 −

L 1(k̄)

L1(k̄)
ρ0 ∧ ζ̂0 +

√
−1κ0 ∧ κ̄0,

dκ0 = −L1(k)

L 1(k)
κ0 ∧ ζ̂0 + ζ̂0 ∧ κ̄0,

dζ̂0 =
L1(L 1(k))

L 1(k)
κ0 ∧ ζ̂0 −

L 1(L 1(k))

L 1(k)
ζ̂0 ∧ κ0 +

L 1(k̄)

L1(k̄)
ζ̂0 ∧ ζ̂0.

Moreover, the Maurer-Cartan matrix is

(dg)g−1 =

α+ ᾱ 0 0
0 α 0
0 δ α− ᾱ

 ,

with the 1-forms

α :=
dc

c
, δ :=

de

c
− e

c

(
dc

c
− dc̄

c̄

)
.
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After computations, we obtain

dρ = (α+ ᾱ) ∧ ρ+

(
P
c

+
L1(k)

L 1(k)

ec̄

c2

)
ρ ∧ κ+

(
− L1(k)

L 1(k)

c̄

c

)
ρ ∧ ζ

+

(
P̄
c̄

+
L 1(k̄)

L1(k̄)

ēc

c̄2

)
ρ ∧ κ̄+

(
− L 1(k̄)

L1(k̄)

c

c̄

)
ρ ∧ ζ̄ +

√
−1κ ∧ κ̄,

dκ = α ∧ κ+

(
− L1(k)

L 1(k)

c̄

c

)
κ ∧ ζ − e

c
κ ∧ κ̄+ ζ ∧ κ̄,

dζ = δ ∧ κ+ (α− ᾱ) ∧ ζ +

(
− L1(k)

L 1(k)

ec̄

c2
+

L1(L 1(k))

L 1(k)

1

c

)
κ ∧ ζ

+

(
− e2

c2
+

L (k̄)

L1(k̄)

eē

c̄2
+

L 1(L 1(k))

L 1(k)

e

cc̄

)
κ ∧ κ+

(
e

c
− L 1(k̄)

L1(k̄)

ēc

c̄2
− L 1(L 1(k))

L 1(k)

1

c̄

)
ζ ∧ κ̄

− L 1(k̄)

L1(k̄)

e

c̄
κ ∧ ζ̄ +

cL 1(k̄)

c̄L1(k̄)
ζ ∧ ζ̄.

As before, we proceed with the absorption by setting

α =: α− xρρ− xκκ− xζζ − xκ̄κ̄− xζ̄ ζ̄,
δ =: δ − yρρ− yκκ− yζζ − yκ̄κ̄− yζ̄ ζ̄.

By examining all the absorption equations which would conduct to some essential torsions
(appropriate linear combinations of torsion coefficients), we come to three key equations

xκ̄ + xκ = − P̄
c̄
− L 1(k̄)

L1(k̄)

ēc

c̄2
,

xκ̄ =
e

c
,

xκ̄ − xκ = −e

c
+

L 1(k̄)

L1(k̄)

ēc

c̄2
+

L 1(L 1(k))

L 1(k)

1

c̄
.

After elimination of the two indeterminates xκ, xκ on the left, we receive on the right an
essential torsion combination which, when set equal to zero, conducts us to normalize the
group parameter

e :=
c

c̄

(
− 1

3
P̄ +

1

3

L 1(L 1(k))

L 1(k)

)
.

We would like to remark that in [8], a normalisation is also done during the second
loop of the Cartan process, not of e, but of a certain group parameter b (absent or equal to
0 in the rigid context), namely

b := −√−1c̄e +
√
−1

3
c

(
L 1L 1(k)

L 1(k)
− P

)
,

and when b = 0 (rigidity assumption), the above normalization for e pops up again!
Before proceeding to the final loop of the Cartan process, let us set

B := −1

3
P̄ +

1

3

L 1(L 1(k))

L 1(k)
,

6. Final loop

We now make a final change of base coframe by setting

ζ ′0 = ζ̂0 + Bκ0,
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so that the reduced G-structure and lifted coframe become

(6.1)

ρκ
ζ

 =

cc̄ 0 0
0 c 0
0 0 c

c̄

ρ0

κ0

ζ ′0

 .

At this stage, the computation of the Darboux-Cartan structure of {ρ0, κ0, ζ
′
0} requires

some work. The exterior differential of any function G independent of c and c becomes

(6.2)

dG = T (G)ρ0 +

(
L1(G)− B K (G)

L 1(k)

)
κ0 +

K (G)

L 1(k)
ζ′0

+

(
L 1(G)− B K (G)

L 1(k)

)
κ0 +

K (G)

L 1(k)
ζ
′
0

:= ∂ρ0(G) ρ0 + ∂κ0(G) κ0 + ∂ζ′0(G) ζ′0 + ∂κ0(G) κ0 + ∂ζ′0
(G) ζ

′
0.

After replacement of ζ̂0 = ζ ′0 − Bκ0 in dρ0 from (5.1), we may re-express

dρ0 =

(
P− PL1(k)

3L 1(k)
+

L 1(L 1(k))L1(k)

3L 1(k)2

)
ρ0 ∧ κ0 −

L1(k)

L 1(k)
ρ0 ∧ ζ′0

+

(
P− PL 1(k)

3L1(k)
+

L1(L1(k))L 1(k)

3L 1(k)2

)
ρ0 ∧ κ0 −

L 1(k)

L1(k)
ρ0 ∧ ζ

′
0 +

√
−1κ0 ∧ κ0

=: R1 ρ0 ∧ κ0 + R2 ρ0 ∧ ζ′0 + R1 ρ0 ∧ κ̄0 + R2 ρ0 ∧ ζ̄′0 +
√
−1κ0 ∧ κ̄0,

Notice that two abbreviated quantities R1, R2 have been implicitly introduced. Similarly

(6.3)
dκ0 = −L1(k)

L 1(k)
κ0 ∧ ζ′0 +

(
P
3
− L 1(L 1(k))

3L 1(k)

)
κ0 ∧ κ0 + ζ′0 ∧ κ0

=: K5 κ0 ∧ ζ′0 + K6 κ0 ∧ κ̄0 + ζ′0 ∧ κ̄0,

The computation of dζ ′0 starts as

dζ ′0 = dζ̂0 + dB ∧ κ0 + B dκ0.

The first term is also treated by a plain replacement of ζ̂0 = ζ ′0 − Bκ0 in dζ0 from (5.1):

dζ̂0 =
L1(L 1(k))

L 1(k)
κ0 ∧ ζ′0 − BL 1(k)

L1(k)
κ0 ∧ ζ

′
0 −

(
L 1(L 1(k))

L 1(k)
+ BL 1(k)

L1(k)

)
ζ′0 ∧ κ0

+

(
BL 1(L 1(k))

L 1(k)
+ BBL 1(k)

L1(k)

)
κ0 ∧ κ0 +

L 1(k)

L1(k)
ζ′0 ∧ ζ

′
0,

as well as the third term

B dκ0 = −B L1(k)

L 1(k)
κ0 ∧ ζ ′0 − B2 κ0 ∧ κ0 + B ζ ′0 ∧ κ0.

The second term dB∧κ0 is more delicate. One not only needs (6.2) applied to G := B
observing that T (B) ≡ 0 by the rigidity assumption, but also, one needs the following key
relation coming from the Levi rank 1 assumption (use Lemma 2.3 or borrow Assertion 7.4
of Foo-Merker [8])

K (B) = −BL 1(k).
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Summing carefully, observing that L1(·) and L 1(·) commute on functions independent
of v, and reorganizing patiently conducts to

(6.4)

dζ′0 =

(PL1(k)

3L 1(k)
−

L 1(L 1(k))L1(k)

3L 1(k)2
+

2L1(L 1(k))

3L 1(k)
−

P
3

−
K (L 1(L 1(k)))

3L 1(k)2
+

K (L 1(k))L 1(L 1(k))

3L 1(k)3

)
κ0 ∧ ζ′0

+

(
−P2

9
−

PL 1(L 1(k))

9L 1(k)
+

5L 1(L 1(k))2

9L 1(k)2
−

L 1(L 1(L 1(k)))

3L 1(k)
+

L 1(P)

3

)
κ0 ∧ κ0

+

(
−P
3
−

2L 1(L 1(k))

3L 1(k)
+

PL 1(k)

3L1(k)
−

L1(L1(k))L 1(k)

3L1(k)2

)
ζ′0 ∧ κ0 +

L 1(k)

L1(k)
ζ′0 ∧ ζ

′
0

=: Z5 κ0 ∧ ζ′0 + Z6 κ0 ∧ κ̄0 + Z8 ζ
′
0 ∧ κ̄0 + Z9 ζ

′
0 ∧ ζ̄′0.

Again, notice that abbreviated quantities Z5, Z6, Z8, Z9 are introduced.
Thanks to this preliminary, the new lifted 1-forms ρ, κ, ζ from (6.1) have differentials

dρ = (α+ ᾱ) ∧ ρ+
1

c
R1 ρ ∧ κ+

c̄

c
R2 ρ ∧ ζ +

1

c̄
R1 ρ ∧ κ̄+

c

c̄
R2 ρ ∧ ζ̄ +

√
−1κ ∧ κ̄,

dκ = α ∧ κ+
c̄

c
K5 κ ∧ ζ +

1

c̄
K6 κ ∧ κ̄+ ζ ∧ κ̄,

dζ = (α− ᾱ) ∧ ζ +
1

c
Z5 κ ∧ ζ +

1

c̄2
Z6 κ ∧ κ̄+

1

c̄
Z8 ζ ∧ κ̄+

c

c̄
Z9 ζ ∧ ζ̄.

Lastly, by introducing the modified Maurer-Cartan 1-form

α =: α−
(

1
cK6 − 1

cR1

)
κ−

(
c̄
c

L1(k)

L 1(k)

)
ζ −

(
1
c̄B
)
κ̄,

the final absorbed equations become:

(6.5)

dρ = (α+α) ∧ ρ+
√
−1κ ∧ κ̄,

dκ = α ∧ κ+ ζ ∧ κ̄,

dζ = (α−α) ∧ ζ + 1
c (Z5 − Z8) κ ∧ ζ + 1

c̄2 Z6 κ ∧ κ̄.

Looking at the expressions of Z5, Z8, Z6 and comparing with the introduction confirms

Z5 − Z8 = I0, Z6 = V0.

Before we proceed to terminate the {e}-structure, the differential of any function G of
all variables (z1, z2, z1, z2, v, c, c) within the full coframe

{
ρ, κ, ζ, κ, ζ,α,α

}
dG = ∂α(G) α+ ∂α(G) α+ ∂ρ(G) ρ+ ∂κ(G) κ+ ∂ζ(G) ζ + ∂κ(G) κ+ ∂ζ(G) ζ.

expresses explicitly in terms of the derivations

(6.6)

∂ρ(·) =
1

cc
T (·),

∂κ(·) =
1

c
L1(·)− 1

c

B
L 1(k)

K (·) +
(
R1 − K6

)
∂c(·)− B ∂c(·),

∂ζ(·) =
c̄

c

1

L 1(k)
K (·)− c

L1(k)

L 1(k)
∂c(·),

∂α(·) = c ∂c(·),

the unwritten vector fields ∂κ, ∂ζ , ∂α being complex conjugate of ∂κ, ∂ζ , ∂α, respectively.
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7. Termination of the {e}-structure: end of proof of Theorem 1.1

In the structure equations finalized above

dρ = (α+ α) ∧ ρ+
√
−1κ ∧ κ,

dκ = α ∧ κ+ ζ ∧ κ,
dζ = (α− α) ∧ ζ + 1

c I0 κ ∧ ζ + 1
ccV0 κ ∧ κ,

let us introduce (abbreviate)

I := 1
c I0, V := 1

c2
V0, ψ := −I ζ − V κ,

so that
dζ = (α−α) ∧ ζ + ψ ∧ κ.

Taking exterior derivatives to exploit 0 = d ◦ d, for instance

0 =
(
dα+ dα) ∧ ρ−

(
α+ α

)
∧ dρ+

√
−1dκ ∧ κ− √−1κ ∧ dκ

and replacing dρ, dκ, dζ in the obtained 3 equations, we obtain

(7.1)

0 = (dα+ dα) ∧ ρ,
0 = (dα− ζ ∧ ζ̄ + I ζ ∧ κ̄) ∧ κ,
0 = (dα− dα) ∧ ζ − (α−α) ∧ dζ + dψ ∧ κ− ψ ∧ α ∧ κ.

In the second equation of (7.1), Cartan’s lemma provides a 1-form A with

(7.2) dα = ζ ∧ ζ̄ − I ζ ∧ κ̄+A ∧ κ.

Decomposing A along the coframe

(7.3) A = Aρρ+Aκκ+Aζζ +Aκκ+Aζζ +Aαα+Aαα,

we want to determine these seven coefficients functions. Substituting (7.2) and (7.3) into
the first equation of (7.1), we realize that

Aζ = 0, Aκ̄ is real, Aζ̄ = I, Aα = Aα = 0,

and so

(7.4) dα = ζ ∧ ζ̄ − I ζ ∧ κ̄+Aρρ ∧ κ+Aκ̄κ̄ ∧ κ+ I ζ̄ ∧ κ.

Next, inserting this dα into the third equation of (7.1), and wedging (·) ∧ ζ, we obtain
the supplementary information

Aρ = 0, 0 = 2Aκ̄ κ̄ ∧ κ ∧ ζ ∧ ζ̄ +α ∧ ψ ∧ κ ∧ ζ̄ + dψ ∧ κ ∧ ζ̄.(7.5)

Now, we expand dψ so that

dψ ∧ κ ∧ ζ̄ =
(
− dI ∧ ζ − I dζ − dV ∧ κ̄− V dκ̄

)
∧ κ ∧ ζ̄

= −
(
∂κ(I)− ∂ζ(V)

)
κ ∧ κ̄ ∧ ζ ∧ ζ̄ + · · · .

By inspecting the coefficient of κ ∧ κ ∧ ζ ∧ ζ on the right side of equation (7.5), one
could think the {e}-structure would terminate by declaring

Aκ̄ := − 1
2

(
∂κ(I)− ∂ζ(V)

)
,

which is a secondary invariant. But to make sure that this assignement makes sense, we
must still argue that the right-hand side is real-valued, and this requires some computation.
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Applying (6.6), it comes

∂κ(I)− ∂ζ(V) =
1

cc̄

(
L 1

(
I0

)
− B

K
(
I0

)
L (k)

+ BI0 −
K

(
V0

)
L (k)

)
=

1

cc̄

(
L 1(Z5)−L 1(Z8)− BK (Z5)

L1(k)
+ BK (Z8)

L1(k)
+ BZ5 − BZ8 −

K (Z6)

L 1(k)

)
.

Lemma 7.6. One has the following identity

L 1(Z5)− K (Z6)

L 1(k)
= BK (Z5)

L1(k̄)
+ Z5K6 − Z6K5 −L1(Z8) + BK (Z8)

L 1(k)
+ Z8K6 + Z9Z6.

Proof. Starting from dζ ′0 in (6.4), it suffices to capture the coefficient of κ0 ∧ κ0 ∧ ζ ′0 in
0 = d ◦ dζ ′0, which is, without providing intermediate computations

0 = ∂κ0(Z5)− Z5K6 − Z5Z8 − ∂ζ′0(Z6) + Z6K5 + ∂κ0(Z8) + Z8Z5 − Z8K6 − Z9Z6.

Using (6.2) and reorganizing leads to the result. �

Substituting this identity into Ak̄ above, we can therefore rewrite

Aκ̄ = −
1

2cc̄

(
Z9Z6 − K5Z6 +−L1(Z8)−L 1(Z8) + BK (Z8)

L 1(k)
+ BK (Z8)

L1(k)
− Z8B− Z8B

)
,

and observing lastly that Z9 = −K5, we conclude that Aκ̄ is indeed real-valued. Thus the
{e}-structure is finally complete, and we have therefore fully proved Theorem 1.1. �

We can attribute a name to the ‘horizontal part’ ofAκ, namely to the following function
defined on M independently of c, c

(7.7)

Q0 := ccAκ = ccAκ (real-valued)

= − 1

2

(
L 1

(
I0

)
− B

K
(
I0

)
L1(k)

+ BI0 −
K
(
V0

)
L 1(k)

)
,

and realize that its expression can be further normalized thanks to

Proposition 7.8. One has:
K (I0)

L1(k)
= − 2I0.

Proof. Start from the {e}-structure

dρ = (α+ α) ∧ ρ+
√
−1κ ∧ κ,

dκ = α ∧ κ+ ζ ∧ κ,

dζ = (α− α) ∧ ζ +
1

c
I0 κ ∧ ζ +

1

cc
V0 κ ∧ κ,

dα = ζ ∧ ζ − 1

c
I0 ζ ∧ κ+

1

cc
Q0 κ ∧ κ+

1

c
I0 ζ ∧ κ,

apply d(·) to the third equation dζ, use d◦d ≡ 0, and wedge on both sides with α∧α∧ρ∧κ,
to obtain

0 = dα ∧ ζ ∧ α ∧ α ∧ ρ ∧ κ− dα ∧ ζ ∧ α ∧ α ∧ ρ ∧ κ

+ ∂ζ

(
1

c
I0

)
ζ ∧ κ ∧ ζ ∧ α ∧ α ∧ ρ ∧ κ,

where ∂ζ is the following vector field coming from (6.6)

∂ζ =
c

c

1

L1(k)
K − c

L 1(k)

L1(k)
∂c.
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Then using dα and dα from the {e}-structure, we obtain the desired identity. �

Thus we recover the expression of Q0 shown in the introduction. More advanced (and
nontrivial) computations performed in [4] provide an alternative expression which imme-
diately shows that Q0 is real

Q0 := 2 Re
{

1

9

K
(
L 1(k)

)
L 1

(
L 1(k)

)2

L 1(k)4
−

−
1

9

K
(
L 1

(
L 1(k)

))
L 1

(
L 1(k)

)
L 1(k)3

−
1

9

K
(
L 1(k)

)
L 1

(
L 1(k)

)
P

L 1(k)3
−

−
1

9

L1

(
L 1(k)

)
L 1

(
L 1(k)

)
L 1(k)2

+
1

9

K
(
L 1

(
L 1(k)

))
P

L 1(k)2
−

−
2

9

L1

(
L 1(k)

)
P

L 1(k)
−

1

9

L 1

(
L 1(k)

)
P

L 1(k)
+

1

3

L1

(
L 1

(
L 1(k)

))
L 1(k)

+
1

6
L 1(P)

}
−

1

9

∣∣P∣∣2 +
1

3

∣∣∣∣L 1

(
L 1(k)

)
L 1(k)

∣∣∣∣2.
8. Representation by Vector Fields

By a result of Gaussier-Merker [10], the Lie algebra of infinitesimal CR automorphisms
of the tube over future light coneMLC is generated by the following 10 holomorphic vector
fields

X1 =
√
−1∂w,

X2 = z1∂z1 + 2w∂w,

X3 =
√
−1z1∂z1 + 2

√
−1z2∂z2 ,

X4 = (z2 − 1)∂z1 − 2z1∂w,

X5 = (
√
−1 +

√
−1z2)∂z1 − 2

√
−1z1∂w,

X6 = z1z2∂z1 + (z2
2 − 1)∂z2 − z2

1∂w,

X7 =
√
−1z1z2∂z1 + (

√
−1z2

2 +
√
−1)∂z2 −

√
−1z2

1∂w,

X8 =
√
−1wz1∂z1 −

√
−1z2

1∂z2 +
√
−1w2∂w,

X9 = (z2
1 − wz2 − w)∂z1 + (2z1z2 + 2z1)∂z2 + 2wz1∂w,

X10 = (−√−1z2
1 +

√
−1wz2 −

√
−1w)∂z1 + (−2

√
−1z1z2 + 2

√
−1z1)∂z2 − 2

√
−1wz1∂w.

For a C ω rigid hypersurface M5 ⊂ C3, define the Lie pseudogroup

Holrigid(M) :=
{
h : M −→M local rigid biholomorphism

}
.

Its Lie algebra, obtained by differentiating 1-parameter local groups of rigid biholomor-
phisms, is:

Lie
(
Holrigid(M)

)
= holrigid(M)

:=

{
X = A1(z1, z2)

∂

∂z1
+A2(z1, z2)

∂

∂z2
+ (αw +B(z1, z2))

∂

∂w
:

(X +X)|M is tangent to M
}
,

where A1, A2, B are holomorphic functions of only (z1, z2), and where α ∈ R.
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Hence, we can easily see that the flows of the vector fields Xi for 1 6 i 6 7 are rigid,
and by argument of Cartan’s equivalence method in the previous sections, these are the
only ones.

In the interest of comparing with the Maurer-Cartan coframe on MLC, we provide the
following table of Lie brackets of the first 7 vector fields

X1 X2 X3 X4 X5 X6 X7

X1 0 2X1 0 0 0 0 0
X2 0 0 −X4 −X5 0 0
X3 0 X5 −X4 2X7 −2X6

X4 0 4X1 −X4 −X5

X5 0 X5 −X4

X6 0 −2X3

X7 0

One can deduce directly from the table that the Lie algebra holrigid(MLC) is not semi-
simple. Indeed, the Killing form applied to the first vector field vanishes for any X in the
Lie algebra:

trace
(
ad(X1)ad(X)

)
= 0,

and the conclusion follows from Cartan’s criterion. This shows that parabolic geometry
does not apply to our study.

Let

∂ρ, ∂κ, ∂ζ , ∂κ̄, ∂ζ̄ , ∂α, ∂ᾱ,

be the right-invariant vector fields that are respective duals to the Maurer-Cartan 1-forms
of the homogeneous model, and let g be the Lie algebra generated by these vector fields.
In what follows, we will seek a Lie algebra isomorphism

τ : holrigid(MLC) −→ g

between holrigid(MLC) and g.
We recall the following fact which can be found in Olver [34, page 257]. Consider a

set of 1-forms θ = {θ1, . . . , θm} on a manifold M producing the fundamental structure
equations

dθi =
∑

16j<k6m

T ijk θ
j ∧ θk (i=1,...,m).

If ∂θi are the vector fields dual to θi, one has the following commutation relations

[
∂θj , ∂θk

]
= −

m∑
i=1

T ijk ∂θi (16i<j6m).

Following this formula, and if we adopt the order of indices

ρ < κ < ζ < α < κ̄ < ζ̄ < ᾱ,

the Maurer-Cartan structure equations in Theorem 1.2 therefore provide the following
commutator table of the vector fields:
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∂ρ ∂κ ∂ζ ∂α ∂κ̄ ∂ζ̄ ∂ᾱ
∂ρ 0 0 0 ∂ρ 0 0 ∂ρ
∂κ 0 0 0 ∂κ −√−1∂ρ ∂κ̄ 0
∂ζ 0 0 0 ∂ζ −∂κ −∂α + ∂ᾱ −∂ζ
∂α −∂ρ −∂κ −∂ζ 0 0 ∂ζ̄ 0
∂κ̄ 0

√
−1∂ρ ∂κ 0 0 0 ∂κ̄

∂ζ̄ 0 −∂κ̄ −∂ᾱ + ∂α −∂ζ̄ 0 0 ∂ζ̄
∂ᾱ −∂ρ 0 ∂ζ 0 −∂κ̄ −∂ζ̄ 0

Let W 1, . . . ,W 7 be vector fields defined by

W 1 := −
√
−1

2
∂ρ,

W 2 := ∂α + ∂ᾱ,

W 3 := ∂ζ − ∂ζ̄ ,

W 4 := ∂κ − ∂κ̄,
W 5 := ∂κ + ∂κ̄,

W 6 := ∂ζ + ∂ζ̄ ,

W 7 := −∂α + ∂ᾱ.

One can see that
[W i,W j ] = [Xi, Xj ].

The following map concludes the proof of Proposition 1.3

τ : Xi 7−→ τ(Xi) := W i
(i=1,...,7).
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[3] ČAP, A.; SLOVÁK, J.: Parabolic geometries. I. Background and general theory, Mathematical Surveys and
Monographs, 154, American Mathematical Society, Providence, RI, 2009. x+628 pp.

[4] CHEN, Z.; FOO, W.G.; MERKER, J.; TA, T.-A.: Normal Forms for Rigid C2,1 Hypersurfaces M5 ⊂ C3,
arxiv.org/abs/1912.01655/, 2019, 72 pages.

[5] CHERN, S.S.; MOSER, J.K.: Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271.
[6] EZHOV, V.; SCHMALZ, G.: Spherical rigid hypersurfaces in C2, Diff. Geom. Appl. 33 (2014), 267–271.
[7] FELS, G.; KAUP, W.: Classification of Levi degenerate homogeneous CR-manifolds in dimension 5, Acta

Math. 201 (2008), no. 1, 1–82.
[8] FOO, W.G.; MERKER, J.: Differential e-structures for equivalences of 2-nondegenerate Levi rank 1 hyper-

surfaces M5 ⊂ C3, arxiv.org/abs/1901.02028/, 2019, 71 pages.
[9] FOO, W.G.; MERKER, J.; TA, T.-A.: On Convergent Poincaré-Moser Reduction for Levi Degenerate

Embedded 5-Dimensional CR Manifolds. arXiv preprint 2003.01952 (2020).
[10] GAUSSIER, H.; MERKER, J.: A new example of a uniformly Levi degenerate hypersurface in C3, Ark. Mat.

41 (2003), no. 1, 85–94. Erratum, Ark. Mat. 45 (2007), 269–271.
[11] FREEMAN, M.: Local biholomorphic straightening of real submanifolds, Ann. of Math. (2) 106 (1977),

no. 2, 319–352.
[12] ISAEV, A.: Spherical tube hypersurfaces, Lecture Notes in Mathematics, 2020, Springer, Heidelberg,

2011, xii+220 pp.
[13] ISAEV, A.: Affine rigidity of Levi degenerate tube hypersurfaces, J. Differ. Geom. 104 (2016), no. 1,

111–141.
[14] ISAEV, A.: On the CR-curvature of Levi degenerate tube hypersurfaces, arxiv.org/abs/1608.02919/, 2016, 11

pages.
[15] ISAEV, A.: Zero CR-curvature equations for Levi degenerate hypersurfaces via Pocchiola’s invariants,

Ann. Fac. Sci. Toulouse 28 (2019) no. 5, 957–976.
[16] ISAEV, A.: Rigid Levi degenerate hypersurfaces with vanishing CR-curvature, J. Math. Anal. Appl. 474

(2019), no. 2, 782–792.



8. Representation by Vector Fields 21

[17] ISAEV, A., ZAITSEV, D.: Reduction of five-dimensional uniformly Levi degenerate CR structures to abso-
lute parallelisms, J. Geom. Anal. 23 (2013), no. 3, 1571–1605.

[18] IVEY, T.A.; LANDSBERG, J.M.: Cartan for beginners.: Differential geometry via moving frames and exte-
rior differential systems, Second edition, Graduate Studies in Mathematics, 175, American Mathematical
Society, Providence, RI, 2016, xviii+453 pp.

[19] JACOBOWITZ, H.: An introduction to CR structures, Mathematical Surveys and Monographs, 32, Ameri-
can Mathematical Society, Providence, RI, 1990, x+237 pp.

[20] KOBAYASHI, S.: Transformation groups in differential geometry. Ergebnisse der Mathematik und ihrer
Grenzgebiete, Band 70. Springer-Verlag, New York-Heidelberg, 1972, viii+182 pp.

[21] MEDORI, C.; SPIRO, A.: The equivalence problem for five-dimensional Levi degenerate CR manifolds,
Int. Math. Res. Not. IMRN 20 (2014), 5602-–5647.

[22] MEDORI, C.; SPIRO, A.: Structure equations of Levi degenerate CR hypersurfaces of uniform type. Rend.
Semin. Mat. Univ. Politec. Torino 73 (2015), no. 1-2, 127–150.

[23] MERKER, J.: Lie symmetries and CR geometry, J. Math. Sci. 154 (2008), no. 6, 817–922.
[24] MERKER, J.: A Lie-Theoretic Construction of Cartan-Moser Chains, Journal of Lie Theory 31 (2021),

1–34.
[25] MERKER, J.; NUROWSKI, P.: On degenerate para-CR structures: Cartan reduction and homogeneous

models, arxiv.org/abs/2003.08166/, 2020, 37 pages.
[26] MERKER, J.; NUROWSKI, P.: Five-dimensional para-CR manifolds and contact projective geometry in

dimension three, arxiv.org/abs/2006.15606/, 2020, 19 pages.
[27] MERKER, J.; POCCHIOLA S.: Explicit Absolute Parallelism for 2-Nondegenerate Real Hypersurfaces

M5 ⊂ C3 of Constant Levi Rank 1, J. Geom. Anal. 30 (2020), 2689—2730. Addendum: 3233–3242.
[28] MERKER, J.; POCCHIOLA S.; SABZEVARI M.: Equivalences of 5-dimensional CR manifolds (II): General

classes I, II, III− 1, III− 2, IV − 1, IV − 2, arxiv.org/abs/1311.5669/, 2013, 95 pages.
[29] NUROWSKI, P.; SPARLING, G.: Three-dimensional Cauchy-Riemann structures and second order ordinary

differential equations, Classical Quantum Gravity 20 (2003), no. 23, 4995–5016.
[30] POCCHIOLA, S.: Explicit Absolute Parallelism for 2-Nondegenerate Real Hypersurfaces M5 ⊂ C3 of

Constant Levi Rank 1, arxiv.org/abs/1312.6400/, 2013, 55 pages.
[31] POINCARÉ, H.: Les fonctions analytiques de deux variables complexes et la représentation conforme,

Rend. Circ. Mat. Palermo 23 (1907), 185–220.
[32] PORTER, C.: The local equivalence problem for 7-dimensional, 2-nondegenerate CR manifolds, Comm.

Anal. Geom. 27 (2019), 1583–1638.
[33] PORTER, C.; ZELENKO, I.: Absolute parallelism for 2-nondegenerate CR structures via bigraded Tanaka

prolongation, arxiv.org/abs/1704.03999/, 2017, 44 pages.
[34] OLVER, P.J.: Equivalence, Invariance and Symmetries, Cambridge University Press, Cambridge, 1995,

xvi+525 pp.
[35] STANTON, N.K.: A normal form for rigid hypersurfaces in C2, Am. J. Math., 113 (1991), 877–910.
[36] STANTON, N.K.: Infinitesimal CR automorphisms of rigid hypersurfaces, Am. J. Math., 117 (1995), 141–

167.
[37] TANAKA, N.: Graded Lie algebras and geometric structures, Proc. U.S.-Japan Seminar in Differential

Geometry (Kyoto, 1965), Nippon Hyoronsha, Tokyo, 1966, 147–150.


