The perimeter cascade in critical Boltzmann quadrangulations decorated by an $O(n)$ loop model - Archive ouverte HAL Access content directly
Journal Articles Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions Year : 2020

The perimeter cascade in critical Boltzmann quadrangulations decorated by an $O(n)$ loop model

(1) , (1) , (2)
1
2
Linxiao Chen
Pascal Maillard

Abstract

We study the branching tree of the perimeters of the nested loops in critical $O(n)$ model for $n \in (0,2)$ on random quadrangulations. We prove that after renormalization it converges towards an explicit continuous multiplicative cascade whose offspring distribution $(x_i)_{i \geq 1}$ is related to the jumps of a spectrally positive $\alpha$-stable L\'evy process with $\alpha= \frac{3}{2} \pm \frac{1}{\pi} \arccos(n/2)$ and for which we can compute explicitly the transform $$ \mathbb{E}\left[ \sum_{i \geq 1}(x_i)^\theta \right] = \frac{\sin(\pi (2-\alpha))}{\sin (\pi (\theta - \alpha))} \quad \mbox{for }\theta \in (\alpha, \alpha+1).$$ An important ingredient in the proof is a new formula on first moments of additive functionals of the jumps of a left-continuous random walk stopped at a hitting time.

Dates and versions

hal-03287391 , version 1 (15-07-2021)

Identifiers

Cite

Linxiao Chen, Nicolas Curien, Pascal Maillard. The perimeter cascade in critical Boltzmann quadrangulations decorated by an $O(n)$ loop model. Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions, 2020, 7 (4), pp.535-584. ⟨10.4171/aihpd/94⟩. ⟨hal-03287391⟩
32 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More