Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Parking on Cayley trees & Frozen Erd\"os-R\'enyi

Abstract : Consider a uniform rooted Cayley tree $T_{n}$ with $n$ vertices and let $m$ cars arrive sequentially, independently, and uniformly on its vertices. Each car tries to park on its arrival node, and if the spot is already occupied, it drives towards the root of the tree and parks as soon as possible. Lackner & Panholzer (arXiv:1504.04972) established a phase transition for this process when $ m \approx \frac{n}{2}$. In this work, we couple this model with a variant of the classical Erd\"os-R\'enyi random graph process. This enables us to describe the phase transition for the size of the components of parked cars using a modification of the multiplicative coalescent which we name the frozen multiplicative coalescent. The geometry of critical parked clusters is also studied. Those trees are very different from Bienaym\'e-Galton-Watson trees and should converge towards the growth-fragmentation trees canonically associated to the $3/2$-stable process that already appeared in the study of random planar maps.
Document type :
Preprints, Working Papers, ...
Complete list of metadata
Contributor : Nicolas CURIEN Connect in order to contact the contributor
Submitted on : Thursday, July 15, 2021 - 4:02:52 PM
Last modification on : Monday, December 13, 2021 - 9:16:41 AM

Links full text


  • HAL Id : hal-03287441, version 1
  • ARXIV : 2107.02116



Alice Contat, Nicolas Curien. Parking on Cayley trees & Frozen Erd\"os-R\'enyi. 2021. ⟨hal-03287441⟩



Record views