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REGULARITY THEORY AND GEOMETRY OF UNBALANCED OPTIMAL

TRANSPORT

THOMAS GALLOUËT, ROBERTA GHEZZI, AND FRANÇOIS-XAVIER VIALARD

Abstract. Using the dual formulation only, we show that the regularity of unbalanced optimal

transport also called entropy-transport inherits from the regularity of standard optimal transport.

We provide detailed examples of Riemannian manifolds and costs for which unbalanced optimal
transport is regular. Among all entropy-transport formulations, Wasserstein-Fisher-Rao (WFR)

metric, also called Hellinger-Kantorovich, stands out since it admits a dynamic formulation, which

extends the Benamou-Brenier formulation of optimal transport. After demonstrating the equiv-
alence between dynamic and static formulations on a closed Riemannian manifold, we prove a

polar factorization theorem, similar to the one due to Brenier and Mc-Cann. As a byproduct, we

formulate the Monge-Ampère equation associated with WFR metric, which also holds for more
general costs. Last, we study the link between c-convex functions for the cost induced by the WFR

metric and the cost on the cone. The main result is that the weak Ma-Trudinger-Wang condition

on the cone implies the same condition on the manifold for the cost induced by WFR.
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1. Introduction

In the past few years, optimal transport has seen an impressive development mainly driven by
applied fields in which real data require robust and largely applicable models. In many applications,
data are modeled by probability distributions. To compare two such distributions, optimal transport
(OT) gives a geometrically meaningful distance. Indeed, OT lifts a distance on the base space to
the space of probability measures. In OT, the underlying idea consists in explaining the variation
of mass between measures via displacement, thereby having a global constraint of equal total mass
for the two measures. The last constraint can easily be alleviated with global renormalization but
the obtained model will not be able to account for possible local change of mass. Considering this
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shortcoming [24, 4], it was natural to enrich the model using local change of mass as proposed by
the last author and co-authors and independently by others in [8, 9, 28, 33].

When looking for a generalization of optimal transport to unnormalized measures, there are
at least two possible directions. The first one consists in extending the Kantorovich formulation
of optimal transport, which is static in contrast to the Benamou-Brenier formulation. This idea
amounts to relaxing the marginal constraints using some divergence such as the relative entropy
(Kullback-Leibler). By doing so, it is not trivial to know whether the resulting functional gives a
proper distance between positive densities. The second one is to start by the dynamic formulation
of Benamou and Brenier [3], which is of interest since it uncovers the Riemannian-like structure of
the Wasserstein metric for the L2 cost. A natural Riemannian tensor on the space of densities which
is one-homogeneous with respect to rescaling of mass is the Hessian of the entropy, known as the
Fisher-Rao metric when restricted to the set of probability densities.

The latter idea was the starting point of the concurrent works [8, 9, 28, 33] that introduced what
is now called unbalanced optimal transport and which has seen several applications in data sciences.
Arguably, the most significant result on this model is the equivalence between the static formulation
and the dynamic formulation [9, 33]. Importantly, the article [33] gives another characterization
of unbalanced optimal transport as a standard optimal transport problem on the cone over the
base manifold with second-order moment constraints. This formulation was exploited in [22, 38]
to reformulate the Camassa-Holm equation as a standard incompressible Euler equation on an
extension of the cone. Then, generalized flows à la Brenier were studied in [21] for the Camassa-Holm
equation and its higher-dimensional extension. Other interesting extensions and related works of the
unbalanced framework include the projection of this distance to the set of probability measures using
homogeneity property [31] and gradient flows that retain more convexity than standard Wasserstein
gradient flows [29, 30]. The dynamic formulation of unbalanced optimal transport has also drawn
some interest [5, 2], for defining new metrics between metric measure spaces [15, 44]. Applications
of unbalanced optimal transport are numerous [48, 41, 43, 44, 17], in particular in data science and
computer vision, since this model is more robust in some sense than standard optimal transport and
computationally feasible using entropic regularization [10].

An open question in this unbalanced framework is the issue of regularity. In the context of
standard optimal transport, regularity appeared after Brenier stated the existence of an optimal
transport map under mild conditions in Euclidean space. Since then, an “implicit” regularity of
optimal transport was discovered in [7] and following works, see [13] for a recent overview. Regularity
does not hold in general but it is observed when the underlying densities are regular and have convex
support in Euclidean space. These results are based on Monge-Ampère equation and they have
triggered a number of works concerned with extensions to Riemannian manifolds [36], culminating
with the identification of the Ma-Trudinger-Wang (MTW) tensor, related to the sectional curvature
tensor of a pseudo-Riemannian metric [26]. The nonnegativity of this tensor is a necessary condition
for the smoothness of standard optimal transport.

Contributions and structure of the article. In this paper, we address the question of
regularity of unbalanced optimal transport. We focus on two important instances of the problem that
give rise to a metric on the space of positive Radon measures, namely the Wasserstein-Fisher-Rao
(or Hellinger-Kantorovich) and the Gaussian-Hellinger distances. In contrast with standard optimal
transport, there is not just a single map that is the solution of the problem. However, the objects of
interest are still encoded via optimal potentials, on which regularity can be studied. Alternatively,
regularity can also be tackled from the primal formulation. Indeed, a plan that minimizes the primal
formulation of unbalanced optimal transport is an optimal transport plan between its marginals.

From the above remarks, it is natural to expect that the regularity of the potentials is inherited
from regularity theory for optimal transport. This is actually the case, and we prove this fact,
Theorem 4, in Section 2.1 by studying the dual formulation and in particular its first-order optimality
condition which encodes optimal transport between the optimal marginals of the primal formulation.
Starting from the general formulation of [33], our regularity theorem requires Lipschitz regularity
of the optimal potentials. The existence of Lipschitz potentials is the main question of Section 2.2,
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where we answer positively, under geometric conditions on the measures. We apply our results in
Section 2.3 to obtain regularity of unbalanced OT for Gaussian-Hellinger and Wasserstein-Fisher-
Rao. In particular, Gaussian-Hellinger is regular on the sphere and the Euclidean space, whereas
Wasserstein-Fisher-Rao is regular only on the sphere but not on the Euclidean space. We then focus
in Section 3 on the Wasserstein-Fisher-Rao metric for which we show the equivalence between static
and dynamic formulations on a closed Riemannian manifold. To derive our main contribution in
this section, we take advantage of a geometric point of view to show a polar factorization [6, 36]
theorem on a semi-direct product of groups, which is the natural extension of the diffeomorphism
group to the unbalanced setting. Such a decomposition inherits the regularity results of unbalanced
optimal transport. Our main contribution on the geometric side is presented in Section 4 in which
we study c-convex function for the cost on the cone and the cost induced by the Wasserstein-Fisher-
Rao metric. We prove that if the so-called weak MTW condition holds on the cone then it is also
the case for the cost induced by Wassertein-Fisher-Rao. Surprisingly, a converse result holds for
cross-curvature as introduced by Kim and McCann in [26].

2. Regularity of unbalanced optimal transport

2.1. From optimal transport regularity to unbalanced optimal transport regularity. In
what follows, we use the notation X,Y for two spaces that are either Euclidean spaces, bounded
convex sets of Euclidean spaces, or Riemannian manifolds. The results in this section apply to the
more general setting of [33] but since we are interested in regularity theory, we choose to focus on
the aforementioned cases.

We consider the general case of an entropy function, that replaces the relative entropy.

Definition 1. An entropy function F : R → [0,+∞] is a convex, lower semi-continuous, nonnegative

function such that F (1) = 0 and F (x) = +∞ if x < 0. Its recession constant is defined as F
′

∞ =

limr→+∞
F (r)
r .

In the sequel, we denote by ∂G(x0) the subdifferential of a function G : R → R at a point x0.

Proposition 1. The Legendre-Fenchel transform of F , denoted by F ∗, has a domain of definition
dom(F ∗) = (−∞, F

′

∞] and it satisfies

∂F ∗(dom(F ∗)) ⊂ R≥0 .

Moreover, if ∂F (0) = +∞, then ∂F ∗(dom(F ∗)) ⊂ R>0.

Remark 1. The hypothesis ∂F (0) = +∞ is satisfied, for instance, for F (x) = x log(x) − x + 1,
arguably the most important and most frequent entropy function used in unbalanced optimal transport.
In this case, the Legendre-Fenchel transform is F ∗(x) = ex − 1.

Definition 2. Let F be an entropy function and µ, ν be Radon measures on a Riemannian manifold
M . The Csiszàr divergence associated with F is

DF (µ, ν) =

∫
M

F

(
dµ(x)

dν(x)

)
dν(x) + F

′

∞

∫
M

dµ⊥ ,

where µ⊥ is the orthogonal part of the Lebesgue decomposition of µ with respect to ν.

For F (x) = x log(x)− x+ 1, DF is also known as Kullback-Leibler divergence or relative entropy,
and it reads

KL(µ, ν) =

∫
dµ

dν
log

(
dµ

dν

)
dν + |ν| − |µ| .

Given F , the resulting divergence DF is jointly convex and lower semi-continuous on the space of
pairs of finite and positive Radon measures, see [33, Corollary 2.9]. We can now define the primal
formulation of unbalanced optimal transport, which is similar to the Kantorovich formulation of
optimal transport. We denote by M+(X) the space of finite and positive Radon measures on X. As
is standard in optimal transportation, we need a cost function, i.e., a function c :M×M → R∪{+∞}
that is assumed to be bounded below. Remark that, in our setting, cost functions are allowed to be
unbounded above.
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Definition 3 (Kantorovich UOT). Let (ρ0, ρ1) ∈ M+(X)×M+(Y ) and F0, F1 be entropy functions.
The unbalanced optimal transport problem is defined as

(2.1) UOT(ρ0, ρ1) = inf
γ∈M+(X×Y )

DF0
(γ0, ρ0) +DF1

(γ1, ρ1) +

∫
X×Y

c(x, y) dγ(x, y) ,

where γ0, γ1 are marginals of γ, and c : X × Y → R ∪ {+∞} is a cost function (see Definition 5
below).

The distance between two Dirac masses can be computed explicitly. Let ρ0 = rδx, ρ1 = sδy, in
order to compute UOT(ρ0, ρ1) one has to compute the local quantity

D((x, r), (y, s)) := inf
z∈R>0

(rF0(z/r) + sF1(z/s) + c(x, y)z) .

For the Kullback-Leibler divergence, i.e., when F0(x) = F1(x) = x log x − x + 1, this quantity can
be computed explicitly as

D((x, r), (y, s)) = r + s− 2e−c(x,y)/2
√
rs.

This will be useful to achieve the Monge formulation of UOT.
The UOT problem has many equivalent formulations. In this section, we focus on the dual

formulation of (2.1) given by the Fenchel-Rockafellar theorem.

Proposition 2 (Dual UOT). The dual formulation of (2.1) is

(2.2) sup
(z0,z1)∈Cb(X)×Cb(Y )

−
∫
X

F ∗
0 (−z0(x)) dρ0(x)−

∫
Y

F ∗
1 (−z1(y)) dρ1(y)

under the constraint

(2.3) z0(x) + z1(y) ≤ c(x, y) .

For the proof in the general case, see for instance [33, Proposition 4.3].
Our goal is to show that the regularity of unbalanced optimal transport follows from the regularity

of standard optimal transport for the cost c. This result can be expected since, once the optimal
marginals γ0, γ1 are fixed in (2.1), optimizing on the plan γ (with fixed marginals) is indeed a
standard optimal transport problem between γ0 and γ1 for the cost c.

Lemma 3 (Linearized UOT). Assume that the entropy functions Fi are differentiable on their
domain. Let (z⋆0 , z

⋆
1) ∈ Cb(X) × Cb(Y ) be a pair of optimal potentials for the dual problem (2.2)

satisfying range(−z⋆i ) ⊂ dom(F ∗
i ). Then (z⋆0 , z

⋆
1) is a solution of the standard optimal transport

problem

(2.4) sup
(z0,z1)∈Cb(X)×Cb(Y )

∫
X

z0(x) dρ̃0(x) +

∫
Y

z1(y) dρ̃1(y)

under the constraint z0(x) + z1(y) ≤ c(x, y) where ρ̃i = F ∗
i
′(−z⋆i )ρi for i = 0, 1.

Proof. Let (δz0, δz1) ∈ Cb(X)×Cb(Y ) denote a first order admissible variation of (z0, z1) ∈ Cb(X)×
Cb(Y ) satisfying the inequality constraint z0(x) + δz0(x) + z1(y) + δz1(y) ≤ c(x, y). Differentiating
the dual functional (2.2), we obtain∫

X

δz0(x)F
∗
0
′(−z0(x)) dρ0(x) +

∫
Y

δz1(y)F
∗
1
′(−z1(y)) dρ1(y) .

At (z⋆0 , z
⋆
1) the optimality implies, for all admissible (δz⋆0 , δz

⋆
1),∫

X

δz⋆0(x)F
∗
0
′(−z⋆0) dρ0(x) +

∫
Y

δz⋆1(y)F
∗
1
′(−z⋆1(y)) dρ1(y) ≤ 0,
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or, equivalently, by linearity,

(2.5)

∫
X

(z⋆0 + δz⋆0(x))F
∗
0
′(−z⋆0) dρ0(x) +

∫
Y

(z⋆1 + δz⋆1(y))F
∗
1
′(−z⋆1(y)) dρ1(y) ≤∫

X

z⋆0(x)F
∗
0
′(−z⋆0) dρ0(x) +

∫
Y

z⋆1(y)F
∗
1
′(−z⋆1(y)) dρ1(y),

for all (z̄0, z̄1) = (z⋆0 + δz
⋆
0 , z

⋆
1 + δz

⋆
1) satisfying z̄0(x)+ z̄1(y) ≤ c(x, y). Inequality (2.5) exactly states

that (z⋆0 , z
⋆
1) is optimal in the constrained problem (2.4).

□

Remark 2. An immediate consequence of this proof is that the corresponding Radon measures ρ̃i
have the same total mass. Indeed, given a pair of potentials (z0, z1) satisfying (2.3), for every λ ∈ R
the pair (z0 + λ, z1 − λ) still satisfies (2.3). However, the linearized objective functional differs with
the term λ(|ρ̃0| − |ρ̃1|) where | · | denotes total mass. This term can be made arbitrarily large unless
|ρ̃0| = |ρ̃1|, thus contradicting the fact that the linearization is bounded.

Remark 3. Thanks to Lemma 3 and Brenier’s work [6, Section 1.4], given (z⋆0 , z
⋆
1), being optimal

for the problem in Proposition 2 can be taken as the definition of variational solutions to a UOT-
Monge-Ampère equation given by

(2.6) det
[
−∇2z⋆0(x) + (∇2

xxc)(x, (∇xc(x, ·))−1z⋆0(x))
]

=
∣∣det [(∇x,yc)(x, (∇xc(x, ·))−1z⋆0(x))

]∣∣ F ∗
0
′(−z⋆0)ρ0(x)

F ∗
1
′(−z⋆1(y))ρ1 ◦ (∇xc(x, ·))−1z⋆0(x))

,

where the right-hand side also depends on z⋆0 . We detail this computation in the Gaussian-Hellinger
and Hellinger-Kantorovich case in Proposition 16 below.

By Remark 3, regularity properties for optimal potentials are related to regularity properties of
solutions to partial differential equations as in (2.6). Before stating the main result of this section, we
introduce the following definition, which essentially encapsulates the regularity of standard optimal
transport needed for its extension to the unbalanced setting.

Definition 4. Let k ∈ N, α ∈ (0, 1). Let (ρ0, ρ1) ∈ M+(X) × M+(Y ) be two measures that are
absolutely continuous with respect to some reference volume with densities (ρ0, ρ1) ∈ Ck,α(X) ×
Ck,α(Y ). We say that (ρ0, ρ1) is a k-regular pair of measures if, for every 0 ≤ l ≤ k and every pair
(λ0, λ1) ∈ Cl,α(X)×Cl,α(Y ) of positive functions bounded away from zero and infinity, the optimal
potentials, solutions to the standard optimal transport problem between the pair (ρ̃0, ρ̃1), where

ρ̃i =
λiρi
|λiρi| , are of class Cl+2,α.

Typical instances for the standard optimal transport problem to be regular are stated in terms
of geometric properties on measures’ support. This provides a sufficient condition for a pair of
measures to be k-regular: if both measures have Ck positive densities that are bounded away from
zero and infinity, then the pair is k-regular if the supports of both measures are convex domains
(see [12, Theorem 3.3]). More generally, Definition 4 fits well within the regularity theory developed
for Monge-Ampère-type equations. Indeed, geometric assumptions, such as the convexity of the
support, which are invariant under pointwise multiplication by a positive function, directly provide
k-regularity.

We are in a position to obtain the main result, stating that unbalanced optimal transport inherits
the regularity of standard optimal transport associated with the cost c.

In the following statement, F0, F1 and c are, respectively, given entropy functions and cost. We
consider the unbalanced optimal transport problem between given measures ρ0 and ρ1 as in (2.1).

Theorem 4 (Reduction to standard optimal transport). Assume that
(1) the Fenchel-Legendre transform of the entropy functions have domain [0,+∞), are Ck+1 on

(0,∞) and ∂Fi(0) = +∞, i = 0, 1;
(2) the pair of measures (ρ0, ρ1) is k-regular;
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(3) the optimal potentials for unbalanced optimal transport (z⋆0 , z
⋆
1) are Lipschitz continuous.

Then, the optimal pair (z⋆0 , z
⋆
1) is of class Ck+2,α(X)× Ck+2,α(Y ).

Assumption (1) ensures that the resulting marginals are sufficiently smooth and with unchanged
support, i.e., the multiplicative term F ∗

i
′(−z⋆i ) does not vanish.

Assumption (2) presumes that a theory of regularity for a class of optimal maps in the case
of standard optimal transport is available. This is the case, for instance, under conditions on the
Ma-Trudinger-Wang tensor, see e.g.[47, Chapter 12]. Relations between the MTW tensor on the
underlying space X and the MTW tensor on the cone over X are discussed in Section 4 below.

Assumption (3) is in general a consequence of Lipschitz continuity of the cost. However, for
unbounded costs, existence of Lipschitz potentials for UOT requires more assumptions, as is shown
in the next section, where we study the case of Wasserstein-Fisher-Rao metric. (Here we focus on
regularity).

The main idea is to use Lemma 3 to relate UOT to standard optimal transport and then start
by Assumption (2) to apply a bootstrap argument.

Proof. Since the optimal potentials are Lipschitz, Lemma 3 gives that these potentials are optimal
for a standard optimal transport problem between a new pair of densities which inherits smoothness
from the potentials and the initial densities, namely ρ̃i = F ∗

i
′(−z⋆i )ρi. Hypothesis (1) gives that

F ∗
i
′(−z⋆i ) is Cl if zi ∈ Cl for l ≤ k. It implies that the regularity of ρ̃i is given by that of zi. At the

initialization step of the bootstrap, they are only Lipschitz, then applying Lemma 3 and Hypothesis
(2), the optimal potentials gain in regularity to be C3,1. Then, in turn, we obtain that the marginals
ρ̃i are Cmin(k,3),1. Iterating this bootstrap argument gives the result, the optimal potentials are
Ck+2,α and the optimal marginals ρ̃i are C

k,α. □

2.2. Existence of Lipschitz potentials for unbounded costs. A natural question about the
range of applicability of Theorem 4 is to understand whether assumption (3) is fulfilled by a nonempty
class of problems. In this section, we prove the existence of Lipschitz potentials for the maximization
problem in (2.2), (2.3) for unbounded costs under an admissibility assumption on the source and
target measure. Such a condition may be interpreted by saying that pure creation/destruction of
mass is forbidden or, in other words, mass transport must be performed between the source and
target measure on the whole supports.

For simplicity, we consider the case whereM is either a compact Riemannian manifold or a convex
and compact domain in Euclidean space. We now define a class of functions that will be considered
in this section as costs. In particular, such costs can be unbounded.

Definition 5. A function c : M ×M → R ∪ {+∞} is said to be a cost function if it is bounded
below, it is continuous at every point in c−1(R), and, for every L ∈ R, the restriction of c on the
sub-level c−1((−∞, L]) is Lipschitz continuous.

The Lipschitz constant on a sub-level may depend on the chosen L.

Definition 6 (Admissible measures). A pair of measures (ρ0, ρ1) ∈ M+(M)2 is admissible if,
denoting Ki = supp ρi, Ki ̸= ∅ i = 0, 1, and there holds

max

(
sup
x∈K0

inf
y∈K1

c(x, y), sup
y∈K1

inf
x∈K0

c(x, y)

)
<∞ .

We denote this finite number by cH(ρ0, ρ1).

When considering the distance as a cost function, being admissible simply means that the supports
of the source and target measure have finite Hausdorff distance.

The main result of this section provides the existence of Lipschitz solutions to unbalanced optimal
transport (2.2) between admissible measures for costs functions as in Definition 5. The admissibility
assumption is crucial in order to tovercome the fact that the cost is not bounded above. Furthermore,
in the framework of a possibly unbounded cost, we are lead to use a “local” notion of c-conjugate
function instead of the usual one, where locality is related to the given pair of measures.
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Proposition 5. Assume Fi, i = 0, 1, are entropy functions such that F ∗
i , i = 0, 1, is strictly

increasing. Let (ρ0, ρ1) ∈ M+(M)2 be a pair of admissible measures. Then there exists an optimal
pair (z0, z1) ∈ C(M)2 for the maximization problem in (2.2). Moreover, zi is Lipschitz continuous
on supp ρi, i = 0, 1 and

∀ y ∈ supp ρ1, z1(y) = inf
x∈supp ρ0

c(x, y)− z0(x),(2.7)

∀x ∈ supp ρ0, z0(x) = inf
y∈supp ρ1

c(x, y)− z1(y).(2.8)

Let us first prove an auxiliary technical lemma.

Lemma 6. Let (ρ0, ρ1) be an admissible pair of measures. Then, there exist x1, . . . , xk ∈ M and
r1, . . . , rk > 0 such that ρ0(B(xi, ri)) > 0 and for any y ∈ supp ρ1, there exists ī ∈ {1, . . . , k} such
that supx∈B(xī,rī)

c(x, y) < cH(ρ0, ρ1) + 1.

Proof. Set Ki = supp ρi, i = 0, 1. Since the pair (ρ0, ρ1) is admissible, for every y ∈ K1, there exists
B(xy, ry) and B(y, δy) small enough such that supx1∈B(xy,ry),y1∈B(y,δy) c(x1, y1) < cH(ρ0, ρ1)+1 and

ρ0(B(xy, ry)) > 0. As K1 is compact, there exists a finite number of points (yi)i=1,...,k such that
K1 ⊂ ∪ki=1B(xy, ry). Therefore with xi = xyi and ri = ryi , for i = 1, . . . , k, the announced result is
satisfied. □

Proof of Proposition 5. Denote by T (z0, z1) the functional to maximise in the dual formulation
(2.2). Since x 7→ Fi(x) is bounded below, F ∗

i (0) is finite, i = 0, 1. Hence, T (0, 0) = −F ∗
0 (0)ρ0(M)−

F ∗
1 (0)ρ1(M) is finite and the supremum in (2.2) is bounded below by T (0, 0). Moreover, since
F ∗
1 is non decreasing, taking the local c-conjugate of z0 ∈ C(M) improves the value of T , i.e.,

T (z0, ẑ0) ≥ T (z0, z1) where

ẑ0(y) = inf
x∈supp ρ0

c(x, y)− z0(x) .

Again, given a function z1, taking the local c-conjugate of z1 improves the value of T , i.e., T (ẑ1, z1) ≥
T (z0, z1), where

ẑ1(x) = inf
y∈supp ρ1

c(x, y)− z1(y) .

Iterating this alternate optimization enables to restrict the optimization set to pairs of potentials
that satisfy z1 = ẑ0 and z0 = ẑ1 (indeed, the local c-conjugate is an involution on its range). The
value of T (z0, z1) does not depend on the behaviour of zi on M \ supp ρi, therefore in the sequel
we consider (any) continuous extension of a function, defined only on the closed set supp ρi, to the
whole manifold. We prove that the set

E = {(z0, z1) ∈ C(M)2 | (2.3) is satisfied, T (z0, z1) ≥ T (0, 0) and z1 = ẑ0, z0 = ẑ1}

is equibounded and equi-Lipschitz, i.e., there exist constants A,B and L > 0 such that for every
pair (z0, z1) ∈ E , and i = 0, 1, B ≤ zi|supp ρi ≤ A, and zi|supp ρi is L-Lipschitz continuous.

Trivially, E is not empty, since it contains (h, ĥ), h(x) ≡ 0. Let us start by equiboundedness of E .
We first demonstrate that there exist an upper bound for ẑ0 on supp ρ1, that is uniform for every
(z0, ẑ0) ∈ E . To this aim, consider B(xi, ri) for i = 1, . . . , k given by Lemma 6 for the measure ρ0
such that

sup
y∈supp ρ1

min
i=1,...,k

c(xi, y) ≤ cH(ρ0, ρ1) + 1 .

Since F ∗
0 (x) ≥ ⟨x, 0⟩ − F0(0) = −F0(0), for every i ∈ 1, . . . , k, there holds

T (0, 0) ≤ T (z0, ẑ0) ≤ −
∫
B(xi,ri)

F ∗
0 (−z0(x)) dρ0(x) + F0(0)ρ0(M) + F1(0)ρ1(M).

Let z̃i = sup {z0(x) | x ∈ B(xi, ri) ∩ supp ρ0}. Then, for every i,

T (0, 0)− F0(0)ρ0(M)− F1(0)ρ1(M) ≤ −F ∗
0 (−z̃i)ρ0(B(xi, ri)).(2.9)
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Since F ∗
0 is increasing, it is invertible and, for a given index i ∈ {1, . . . , k}, there are two possibilities:

either z̃i ≥ −(F ∗
0 )

−1(0) or z̃i < −(F ∗
0 )

−1(0). Define

κ := min

{
−(F ∗

0 )
−1(0),

T (0, 0)− F0(0)ρ0(M)− F1(0)ρ1(M)

δ̄

}
,

where δ̄ = min{ρ0(B(xi, ri), i = 1, . . . k}. In the first case, z̃i ≥ −(F ∗
0 )

−1(0), hence z̃i ≥ κ. In the
second case, there holds F ∗

0 (−z̃i) ≥ 0 and equation (2.9) implies

T (0, 0)− F0(0)ρ0(M)− F1(0)ρ1(M)

δ̄
≤ −F ∗

0 (−z̃i).

Since F ∗
0 (x) ≥ ⟨x, 1⟩ − F0(1) = x, we deduce that

z̃i ≥
T (0, 0)− F0(0)ρ0(M)− F1(0)ρ1(M)

δ̄
≥ κ.

In the end, z̃i is bounded below by the constant κ which depends only on T (0, 0), F0, F1, ρ0, ρ1, δ̄.
For every y ∈ supp ρ1, let (xī, rī) given by Lemma 6 such that supx∈B(xī,rī)

c(x, y) ≤ cH(ρ0, ρ1)+1.
Then

ẑ0(y) = inf
x∈supp ρ0

c(x, y)− z0(x)

≤ inf
x∈B(xī,rī)∩supp ρ0

c(x, y)− z0(x) ≤ cH(ρ0, ρ1) + 1 + inf
B(xī,rī)∩supp ρ0

−z0(x)

= 1 + cH(ρ0, ρ1)− sup
B(xī,rī)∩supp ρ0

z0(x) = 1 + cH(ρ0, ρ1)− z̃ī

≤ 1 + cH(ρ0, ρ1)− κ.

Hence ẑ0 is bounded above on supp ρ1 by 1+ cH(ρ0, ρ1)−κ. As a direct consequence, z0 is bounded
below on supp ρ0 by cI − 1 − cH(ρ0, ρ1) + κ, where cI is the infimum of the cost function c. By
symmetry of the hypothesis on ρ0, ρ1, we obtain that there exists A,B, depending only on ρ0, ρ1,
F ∗
0 , F

∗
1 and cH(ρ0, ρ1), cI such that B ≤ z0|supp ρ0 ≤ A and B ≤ ẑ0|supp ρ1 ≤ A, for every (z0, ẑ0) ∈ E .

We now prove that there exists a uniform constant L such that for every pair (z0, z1) ∈ E , zi|supp ρi
is Lipschitz continuous with constant L. Let (z0, z1) ∈ E . By definition of E , z1 = ẑ0. Let y ∈ supp ρ1
and let x̄ ∈ supp ρ0 be such that

(2.10) z1(y) = c(x̄, y)− z0(x̄).

Since zi is bounded by A on supp ρi, there holds c(x̄, y) ≤ 2A. Hence, by continuity, there exists

ρ̄ > 0 such that {t ∈ supp ρ1 | d(y, t) < ρ̄} ⊂ c−1(2A). Let L̃ > 0 be the Lipschitz constant of c on
c−1(2A). Then, for every t ∈ supp ρ1

(2.11) ẑ0(t) ≤ c(x̄, t)− z0(x̄) .

If moreover, d(y, t) ≤ ρ̄, then subtracting (2.10) from (2.11) gives

ẑ0(y)− ẑ0(t) ≤ c(x̄, y)− c(x̄, t) ≤ L̃d(y, t) .

By compactness, we infer that there exists a constant L > 0, depending only on L̃ and not on z1,
such that z1|supp ρ1 is L-Lipschitz. By a symmetric argument, z0|supp ρ0 is L-Lipschitz. Therefore
E is not empty, equibounded and equi-Lipschitz. As a consequence, the existence of an optimal
pair (z0, z1) for (2.2) with the required properties is obtained with a standard argument based on
Ascoli–Arzelà theorem for compactness and dominated convergence theorem for the convergence of
the functional T . □

As concerns uniqueness, an obvious sufficient condition is given by the following statement.

Proposition 7. If F ∗
0 and F ∗

1 are strictly convex, the optimal pair (z0, z1) is unique ρ0 and ρ1 a.e.

Proof. The maximization problem (2.2) is strictly convex. □
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Collecting the previous results leads to the existence and uniqueness of optimal Lipschitz poten-
tials for (2.1) for some relevant costs in the literature. For instance, in usual applications outside
mathematics, the Euclidean squared distance is often used. From the mathematical point of view,
the case of

c(x, y) = − log
(
cos2

(
d(x, y) ∧ π

2

))
stands out since it appears in the static formulation of the Wasserstein-Fisher-Rao metric. Impor-
tantly, this cost is unbounded as well as its gradients, since it blows up when d(x, y) is close to
π/2.

Corollary 8. Let F0(x) = F1(x) = x log(x)− x+ 1 and

(2.12) c(x, y) =
1

2
d(x, y)2, or c(x, y) = − log

(
cos2 (d(x, y) ∧ δπ/2)

)
for some δ > 0. Then, for every pair of admissible measures, there exists a unique pair of Lipschitz
continuous optimal potentials for the dual formulation (2.2).

Note that any pair of measures is admissible for the quadratic cost.
By Corollary 8, assumption (3) in Theorem 4 is fulfilled and for the chosen entropy function,

assumption (1) is satisfied. Therefore, in the setting of Corollary 8, the regularity of unbalanced
optimal transport is reduced to the regularity of the standard optimal transport and it can be inferred
in different ways depending on the choice of the ambient spaceM . WhenM = Rd, the quadratic cost
supports regularity theorems for optimal transport. For the second cost in (2.12), regularity results
also hold for M = Sd the unit sphere of dimension d and for the sphere of radius 1/2. Providing
sufficient conditions of regularity of unbalanced optimal transport problems associated with costs in
(2.12) is the object of the next section.

2.3. Sufficient conditions for regularity of unbalanced optimal transport for two impor-
tant costs. We focus on the two costs in (2.12), which are of relevance in unbalanced optimal
transport. The first one is the most commonly used in practical applications, the Euclidean squared
cost. The second one arises naturally from the dynamic formulation which was originally proposed
to introduce this model. In [33], the distances associated with those costs are named after Gaussian-
Hellinger for the quadratic case, and Hellinger-Kantorovich for the other cost. The latter is also
known as Wasserstein-Fisher-Rao distance (see for instance [8, 9]).

Gaussian-Hellinger distance: Euclidean space and spheres. Regularity in these two cases is
an immediate consequence of Theorem 4 and the regularity of optimal transport, for which sufficient
conditions ensuring assumption (2) in Theorem 4 are well-known. We simply detail the case of the
Euclidean space, for which the following statement holds true, as a consequence of [12, Theorem
3.3].

Corollary 9. Let X,Y be convex sets in Rd and let (µ, ν) ∈ M+(X) × M+(Y ) be a pair of
measures which are absolutely continuous with respect to the Lebesgue measure, with densities (f, g)
bounded away from zero and infinity. Assume the entropy functions F0, F1 have strictly convex and
differentiable Fenchel-Legendre transforms with infinite slope at 0.

If (f, g) ∈ Ck,α(X) × Ck,α(Y ) for some positive integer k and α ∈ (0, 1), then, the pair of
optimal potentials (z0, z1) in the dual formulation (2.2) for the quadratic cost 1

2∥x− y∥2 belongs to

Ck+2,α(X)× Ck+2,α(Y ) and ∇z0 is a Ck+1,α-diffeomorphism between X and Y .

Wasserstein-Fisher-Rao distance. We consider the case of a d-dimensional Riemannian manifold
M having constant sectional curvature, i.e., M may be the Euclidean space, a d-sphere, or the
hyperbolic space and

(2.13) c(x, y) = − log
(
cos2

(
d(x, y) ∧ π

2

))
.

The purpose of this section is to provide sufficient conditions to ensure assumption (2) in Theorem 4
based on the study of the so-called Ma-Trudinger-Wang tensor for the cost (2.13) on such mani-
folds. Indeed, the relation between such tensor and smoothness of optimal transport maps has been
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completely understood in the work [35]. We also refer the reader to [47, Chapter 12] and references
therein for a comprehensive treatment of the subject. Roughly speaking, besides conditions on den-
sities and supports of source and target measures, one is led to check whether the MTW tensor is
nonnegative. In particular: MTW weak condition states that MTW tensor must be nonnegative
for every pair of points and every pair of c-orthogonal vectors; MTW strong condition states that
MTW weak condition holds true and the tensor vanishes only at vanishing vectors. The following
result provides instances of Riemannian manifolds where MTW strong or weak conditions hold.

Proposition 10. Let M be a Riemannian manifold with constant sectional curvature and let c :
M ×M → R ∪ {+∞} be as in (2.13).

Then

(i) MTW weak condition for c fails if M is either the Euclidean space Rd, either the hyperbolic
space Hd or the d-sphere of radius R > 1 with the induced metric;

(ii) MTW weak condition holds for c if M is the d-sphere of radius 1 with the induced metric;
(iii) MTW strong condition holds for c if M is the d-sphere of radius R = 1/2 with the induced

metric.

As a consequence, combining Proposition 10 with Theorem 4, unbalanced optimal transport on
spheres or radius 1 and 1/2 features smoothness.

MTW tensor for costs of the type c(x, y) = l(d(x, y)) was analyzed in [32] for even smooth func-
tions l : R → [0,+∞) having invertible derivative. In particular, authors characterize MTW weak
and strong conditions on manifolds with constant sectional curvature in terms of some computable
explicit functions, see [32, Theorem 5.3].

Proof. We start by recalling the main results in [32]. Consider a cost function J(x, y) = l(d(x, y)),
where l : R → [0,+∞[→ R is a smooth, even function such that l′′(s) > 0. Set h(s) = (l′)−1(s).
Then the J-exponential map can be computed as

J- expx(v) = expx

(
h(|v|)
|v|

v

)
,

where expx denotes the Riemannian exponential on M and |v| =
√
gx(v, v) denotes the norm with

respect to the metric tensor on M (Recall that the J-exponential map is defined by the identity
J- expx(v) = y if and only if v = −∇xJ(x, y)). By definition, the MTW tensor is

MTWx(u, v, w) = −3

2
∂2s∂

2
t |s=t=0J(expx(tu), J- expx(v + sw)),

where x ∈M , and u, v, w are tangent vectors at x. Define A(s) = 1
h(s) , and

B(s) =


s coth(h(s)), if M = Rd,
s

h(s) , if M = Hd,
s cot(h(s)), if M is the unit sphere.

By [32, Proposition 5.1], whenever u and w are J-orthogonal, the MTW tensor can be simplified to

MTWx(u, v, w) = −3

2

(
α(|v|)|u0|2|w0|2 + β(|v|)|u0|2|w1|2 + γ(|v|)|u1|2|w0|2 + δ(|v|)|u1|2|w1|2

)
,

where u = u0 + u1, w = w0 + w1, u0, w0 ∈ span{v}, u1, w1 ∈ (span{v})⊥ and coefficients are given
by

α(s) =
s2A′′(s) + 6(A(s)−B(s))− 4s(A′(s)−B′(s))

s2
,(2.14)

β(s) =
sA′(s)− 2(A(s)−B(s))

s2
,(2.15)

γ(s) = B′′(s),(2.16)

δ(s) =
B′(s)

s
,(2.17)
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in terms of functions A,B defined above. By Theorem 5.3 in [32], the MTW tensor satisfies MTW
weak condition if and only if, for every s ∈ [0, |l′(D)|], with D the diameter of M , four inequalities
hold

(2.18) β(s) ≤ 0, γ(s) ≤ 0, δ(s) ≤ 0, α(s) + δ(s) ≤ 2
√
β(s)γ(s).

Moreover, MTW strong condition holds if and only if the four inequalities are strict for every
s ∈ (0, |l′(D)|].

Note that cost c in (2.13) is of the type l(d(x, y)), for l(s) = − log(cos2(s)). We compute explicitly
functions A,B for the hyperbolic space and for the Euclidean space. In both cases, β(0) > 0, whence
MTW weak condition fails.

When M is the d-sphere of radius R ∈ (0,+∞), we interpret the cost c in (2.13) as c(x, y) =
lR(d(x, y)) where lR(x, y) = − log(cos2(Rs)). Hence we set B(s) = s cot(hR(s)), with hR = (l′R)

−1

and apply [32, Proposition 5.1] to compute the MTW tensor on the d-sphere of radius R by means
of the MTW tensor on the unit d-sphere with rescaled distance. Note that MTW conditions (weak

or strong) must hold for s ∈ [0, |l′R(D)|], where D = π is the diameter of the unit sphere.
Computing explicitly, α(0) = β(0) = γ(0) = δ(0) = 1

3

(
1− 1

R2

)
. Therefore we conclude that when

R > 1 MTW weak condition fails. On the other hand, an explicit computation gives

for R = 1, α(s) = β(s) = γ(s) = δ(s) ≡ 0,

for R =
1

2
, α(s) = β(s) = γ(s) = δ(s) ≡ −1 .

Hence for R = 1 MTW weak condition holds and MTW vanishes on c-orthogonal vectors, whereas
for R = 1/2 MTW strong condition holds. □

Remark 4. We refer the reader to Section 4 for an alternative way of studying the MTW tensor
associated with the cost (2.13) on M . In that section, we study the link between the aforementioned
tensor and the MTW tensor associated with the quadratic cost on the cone C (M) (see Section 3.1.2
for the definition of the cone and its Riemannian structure).

A natural question is whether MTW condition (weak or strong) holds true for spheres of radius
R ∈ (0, 1/2)∪(1/2, 1). To this aim, it is sufficient to show that the four functions βR(·), γR(·), δR(·), (αR+
δR−2

√
βRγR)(·) are negative, respectively strictly negative, for every s ∈ (0, |2R tan(πR)|], for MTW

weak condition, respectively MTW strong condition, to hold. We end this section by proving that,
for R ∈ (0, 1/2), βR(s) ≤ 0 and γR(s) ≤ 0, for every s ∈ (0, 2R tan(πR)). As for the sign of the
other two functions, we can only hint at their negativity by analyzing the shape of their 0-level sets.

Using (2.14), (2.15), (2.16), (2.17), an easy computation gives

αR(s) =
12R2

s2
− 2

s
cot

(
1

R
arctan(s/(2R))

)
− 8

s2 + 4R2
csc2

(
1

R
arctan(s/(2R))

)
,

βR(s) =
2

s2
ξ(s),

γR(s) =
8 csc2

(
1
R arctan(s/(2R))

)
(s2 + 4R2)2

ξ(s),

δR(s) =
1

s
cot

(
1

R
arctan(s/(2R))

)
− 2

s2 + 4R2
csc2

(
1

R
arctan(s/(2R))

)
,

where the auxiliary function s 7→ ξ(s) is defined by

ξ(s) = s cot

(
1

R
arctan(s/(2R))

)
− 2R2.

We are going to show that, for every R ∈ (0, 1/2) and every s ∈ (0, 2R tan(πR)), ξ(s) < 0. Note that

for R ∈ (0, 1/2), arctan(s/(2R))
R ∈ (0, π). Hence ξ(s) < 0 is equivalent to s cot( arctan(s/(2R))

R ) < 2R2

which in turn is equivalent to arctan(s/(2R))
R > arccot( 2R

2

s ). Using arctanx = arccot(1/x), the
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last inequality is equivalent to arccot(2R/s) > Rarccot( 2R
2

s ). Set v = 2R/s and define k(v) =
arccot(v) − Rarccot(Rv). To show that ξ(s) < 0 it is sufficient to prove that k(v) > 0 on (0,+∞).
This is an easy consequence of the fact that k(0) = π/2(1−R) > 0, limv→+∞ k(v) = 0 and

k′(v) =
R2

1 +R2v2
− 1

1 + v2
< 0, v ∈ (0,+∞).

3. The Wasserstein-Fisher-Rao metric

In this section, we detail the case of the Wasserstein-Fisher-Rao (WFR) metric on a smooth
compact Riemannian manifold M , which is the cornerstone of unbalanced optimal transport as
introduced in [28, 8, 33]. Recall that the Wassertein-Fisher-Rao corresponds to the cost function
given in (2.13) and to the Kullback-Leibler divergence for the marginal penalization (i.e., both
entropy functions are given by F (x) = x log(x) − x + 1. First, we prove the equivalence of several
definitions of this metric. In particular, we introduce an equivalent of the Monge formulation of
standard OT to this unbalanced setting. Using this formulation we prove the existence of unbalanced
optimal transport maps and an unbalanced version of Brenier polar factorization theorem on the
automorphism group of the cone C (M) see Theorem 18. A regularity theory for such maps is
obtained in section 2: we provide here its link to an unbalanced Monge-Ampère equation, see
section 3.4.

3.1. Equivalent formulations of WFR metric. As in classical optimal transport, theWasserstein-
Fisher-Rao metric can be defined in many ways. Here we detail five of them, namely: dynamical,
semi-couplings, dual, Kantorovich and Monge formulations. The Kantorovich formulation is the one
introduced in Definition 3 and the dual formulation is given in Proposition 2. For the sake of clarity,
we instantiate them hereafter. We chose to deal with Monge formulation in another section, namely
Section 3.2, since it is deduced from a geometric construction on the cone.

The starting point of all these formulations is the dynamical formulation of the WFR metric which
appears naturally as a generalization of the Benamou-Brenier formula by introducing a source term
in the continuity equation. This is the formulation we first present below.

In the sequel, let (M, g) be a compact Riemannian manifold, let vol denote the Riemannian
volume on M and let div denote the divergence of a vector field with respect to vol.

3.1.1. Dynamical formulation of WFR metric. Given ρ0, ρ1 ∈ M+(M) and a, b > 0, we start by the
following optimization problem

inf
ρ,v,α

1

2

∫ 1

0

∫
M

(
a2gx(v(x), v(x)) + b2α2(t, x)

)
dρt(x) dt

under the constraints of the generalized continuity equation, with time boundary conditions

∂tρ+ div(ρv) = αρ , ρ(0, ·) = ρ0, ρ(1, ·) = ρ1 .

Here the control variables are α, the growth rate (also called Malthusian parameter) and v, a vector
field, both depending on time t and position x ∈M .

Remark 5. For α ≡ 0, the dynamic formulation above is the well-known Benamou-Brenier formu-
lation of the optimal transport problem [3].

We now give the definition, relying on convexity, which allows us to account for every positive
Radon measure and not only those with density with respect to the reference volume measure.

Definition 7 (Dynamical formulation of WFR metric). Let ρ0, ρ1 ∈ M+(M), the WFR metric is
defined by

WFR2(ρ0, ρ1) := inf
ρ,m,µ

J (ρ,m, µ) ,

where

(3.1) J (ρ,m, µ) = a2
∫∫

[0,1]×M

g−1
x (m̃(t, x), m̃(t, x))

ρ̃(t, x)
dν(t, x) + b2

∫∫
[0,1]×M

µ̃(t, x)2

ρ̃(t, x)
dν(t, x)
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over the set (ρ,m, µ) satisfying ρ ∈ M+([0, 1] ×M), m ∈ (Γ0
M ([0, 1] ×M,TM))∗ which denotes

the dual of time-dependent continuous vector fields on M (time-dependent sections of the tangent
bundle), µ ∈ M+([0, 1]×M) subject to the constraint

(3.2)

∫∫
[0,1]×M

∂tf dρ+

∫∫
[0,1]×M

(m(∇xf)− f dµ) =

∫
M

f(1, ·) dρ1 −
∫
M

f(0, ·) dρ0

satisfied for every test function f ∈ C1([0, 1]×M,R). Moreover, ν ∈ M+([0, 1]×M) is chosen such
that ρ,m, µ are absolutely continuous with respect to ν and ρ̃, m̃, µ̃ denote their Radon-Nikodym
derivative with respect to ν.

Note that due to the one-homogeneity of the formulas with respect to (ρ̃, m̃, µ̃), the functional J
is well-defined, i.e., it does not depend on the choice of the dominating measure ν. Moreover, the
divergence is defined by duality on the space C1(M). Formula (3.1) in Definition 7 is called dynamic
since the time variable is involved and only length-space structures can be defined in this way. It is
of interest to show that the variational problem admits a so-called static formulation that does not
involve the time variable.

3.1.2. Semi-couplings formulation. The semi-couplings formulation already appears in [9] and in
another form in [33]. In both references, equivalence between semi-couplings and dynamical formu-
lation is proved in the Euclidean case. We now extend those results to a Riemannian setting.

Given ρ0, ρ1 ∈ M+(M), set

Γ(ρ0, ρ1) :=
{
(η0, η1) ∈

(
M+(M

2)
)2

: p1∗η0 = ρ0, p
2
∗η1 = ρ1

}
,

where p1 and p2 denote the projection on the first and second factors of the product M2. Moreover,
consider the cone

C (M) = {(x, r) | x ∈M, r > 0},
endowed with the Riemannian metric

(3.3) h(x,r) = a2r2gx + 4b2 dr2,

where g is the Riemannian metric on M , and a, b appear in the definition of WFR metric. Finally,
denote by dC (M) the distance on C (M) associated with the Riemannian metric h.

Theorem 11 (Semi-couplings formulation of WFR metric). The WFR distance satisfies

WFR2(ρ0, ρ1) = min
(η0,η1)∈Γ(ρ0,ρ1)

∫
M2

d2C (M)

((
x,

√
dη0
dη

)
,

(
y,

√
dη1
dη

))
dη(x, y) ,(3.4)

where η is any measure that dominates η0, η1.

The functional

S(η0, η1) :=
∫
M2

d2C (M)

((
x,

√
dη0
dη

)
,

(
y,

√
dη1
dη

))
dη(x, y)

is well-defined, i.e., it does not depend on the choice of the measure η. Indeed, the squared distance
function d2C (M) is two-homogeneous with respect to dilation of the mass variables, since h(x,λr) =

a2(λr)2gx + 4b2λ2 dr2. As a consequence of Rockafellar’s theorem [39, Theorem 5], S is convex and
lower semicontinuous on the space of Radon measures as the Legendre-Fenchel transform of a convex
functional on the space of continuous functions.

Our proof of Theorem 11 is an adaptation to the Riemannian case of the one in [9, Theorem 4.3], to
which we refer the reader for technical details. The same reasoning, based on a simple regularization
argument that is intrinsic on Riemannian manifolds, applies under minor adaptations to the standard
Wasserstein distance W2 on Riemannian manifolds, see for instance the comments in [46, Remark
8.3]. A different proof of the equivalence between dynamical and semi-couplings formulation for the
Wasserstein distance W2 in the Riemannian setting is given in [1] which uses the Nash isometric
embedding theorem.
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Proof of Theorem 11. First of all, the set Γ is weak∗ closed, and the functional S is weakly contin-
uous and lower semicontinuous. Therefore, the fact that the minimum for S is attained follows by
application of the direct method of calculus of variations.

Since dC (M) is a distance on C (M), one can prove that S is a distance on M+(M) and S is
continuous w.r.t. the weak∗ topology, as done in [9].

We claim that for every pair of measures (ρ0, ρ1) that are a finite linear combinations of Dirac
masses, the inequality

S(ρ0, ρ1) ≥ WFR2(ρ0, ρ1),

holds. To see this, note that for ρ0 =
∑
i aiδxi

and ρ1 =
∑
j bjδyj , for finite sets of points

{xi, yj}i,j ⊂ M , the minimization problem (3.4) can be reduced to a linear optimization prob-
lem in finite dimension. Indeed, the optimal semi-couplings can be proved to have support on the
product of the supports of ρ0 and ρ1. As a consequence, the optimal semi-couplings can be written
as γk =

∑
i,jm

k
i,jδ(xi,yj) for k = 0, 1. Then, one has

S(ρ0, ρ1) =
∑
i,j

d2C (M)

(
(xi,m

0
i,j), (yj ,m

1
i,j)
)

≥
∑
i,j

WFR2(m0
i,jδxi

,m1
i,jδyj ) ≥ WFR2(ρ0, ρ1) ,

where the first inequality comes from the fact that the distance on the cone (with mass coordinates)
for a geodesic (x(t),m(t)) is given by the evaluation of WFR on the path m(t)δx(t). The second

inequality is given by subadditivity of WFR2. By density of finite linear combination of Dirac
masses and weak∗ continuity of both WFR and S, the inequality S(ρ0, ρ1) ≥ WFR2(ρ0, ρ1) holds
on (M+(M))2.

We now prove the reverse inequality which follows using the convexity of (ρ0, ρ1) 7→ WFR2(ρ0, ρ1).
By subadditivity of WFR2, one has, for every ρ2 ∈ M+(M)

WFR2(ρ0 + ρ2, ρ1 + ρ2) ≤ WFR2(ρ0, ρ1) .

Using the triangular inequality and the fact that the WFR metric is bounded above (up to a
multiplicative constant) by the Hellinger distance, we also have, for ε1 > 0

WFR(ρ0, ρ1) ≤ WFR(ρ0 + ε1 vol, ρ1 + ε1 vol) + 2 cst
√
ε1 .

Let us be more precise on the previous inequality. Consider a triplet (ρ,m, µ) which is a solution
to the continuity equation (3.2), then so does the triplet (ρ + ε1 vol,m, µ) satisfying the boundary
conditions ρ(0, ·) = ρ0, ρ(1, ·) = ρ1. Note that ε1 vol is constant in time and space. In addition, it
is obvious that

J (ρ+ ε1 vol,m, µ) ≤ J (ρ,m, µ) .

To prove the final result, it suffices to prove that S(ρ0+ ε1 vol, ρ1+ ε1 vol) ≤ J (ρ+ ε1 vol,m, µ)+ ε0
for any ε0 > 0. This will be done via a smoothing argument which is standard in the Euclidean case
using convolution but has never been adapted, to the best of our knowledge, to work on Riemannian
manifolds (see [46, Remarks 8.3]).

Our goal is to prove that there exists a path of smooth quantities (ρε,mε, µε) for which J (ρε,mε, µε)
is close to J (ρ,m, µ) and ρε is strictly positive and the time endpoints of the path are close in the
weak∗ topology. The conclusion can then be obtained by integrating the flow defined by the vector
field (mε/ρε, µε/ρε). It gives that S(ρε(0), ρε(1)) ≤ J (ρε,mε, µε) and the conclusion is similar to
the Euclidean case [9, Theorem 5].

By compactness of M , it is sufficient to locally smooth the path on M by iteration of this
smoothing. Therefore, we will work on a chart U around a point x0 ∈ M . By Moser’s lemma, it is
possible to choose the chart such that the volume form is the Lebesgue measure.

Averaging over perturbations of identity. We construct perturbations (of compact support)
of the identity which will be local translations around x0 and which will play the role of the trans-
lations in the standard convolution formula. We consider a ball B(x0, r0) and a function u whose
support is contained in B(x0, r0) and is constant equal to 1 on B(x0, r1) for 0 < r1 < r0. For a
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given vector v ∈ Rd, we consider the map Φv(x) = x+u(x)v which is a smooth diffeomorphism. We
extend Φ to the whole manifold M by defining it as identity outside of U .

Let k : Rd+1 → R+ be a smooth symmetric and nonnegative function whose support is contained
in the unit ball and such that

∫
k(y) dy = 1 and define for ε > 0, kε(x) = k(x/ε)/εd+1 whose support

is thus contained in the ball of radius ε. We define the mollifier kε ⋆ acting on f ∈ C([0, 1] × U,R)
by

(kε ⋆ f)(s, x) =

∫
R

∫
U

kε(s, v)f(t+ s,Φ−1
v (x)) dv ds ,

which is well defined for ε small enough, extending the function outside the time interval [0, 1]
as a constant. Moreover, for ε sufficiently small, it coincides with the usual convolution on a
neighborhood of x0. By duality, it is well-defined on Radon measures and extends trivially to
vector-valued measures as follows

(kε ⋆ ρ)(s, x) =

∫
R

∫
U

kε(s, v)(Φv)∗(ρ(t+ s)) dv ds ,

(kε ⋆ m)(s, x) =

∫
R

∫
U

kε(s, v)Ad∗
Φ−1

v
(m(t+ s)) dv ds .

We consider the path (Φv)∗(ρ) which satisfies the continuity equation for the triple of measures(
(Φv)∗(ρ),Ad∗

Φ−1
v
(m), (Φv)∗(µ)

)
and average over v to consider

(ρε,mε, µε) = (kε ⋆ ρ, kε ⋆m, kε ⋆ µ) .

As a convex combination, this path satisfies the continuity equation and the boundary conditions
are close in the weak∗ topology when ε tends to 0. An important remark is that, for ε small
enough, kε ⋆ Ad∗

Φ−1
v
(m) reduces to the standard convolution on m in a small neighborhood of x0

since DΦv = Id in a neighborhood of x0 since u ≡ 1 on B(x0, r1).
Use of convexity of J : For notation convenience, we denote by f the integrand of J and

we make the abuse of notation to use ρ,m, µ instead of their corresponding densities w.r.t. ν a
dominating measure.

The change of variables y = Φ−1
v (x) (we use one-homogeneity hereafter) leads to

J (ρε,mε, µε) =

∫
[0,1]×M

f (x, (ρε,mε, µε)) dν(x) ≤∫
R

∫
U

∫
[0,1]×M

kε(s, v)f(Φv(y), (ρ(t+ s), DΦv(t, y)m(t+ s), µ(t+ s))) dν(t, y) dtdsdv .

Moreover, since the metric g onM is smooth and in particular uniformly continuous onM and since
∥DΦv − Id ∥ ≤ cst∥v∥ for a constant that only depends on u, we have, for any ε2 > 0, the existence
of δ > 0 such that if ∥v∥ ≤ δ then,

|gx(w,w)− gΦv(x)(DΦv(x)w,DΦv(x)w)| ≤ ε2 gx(w,w) ,

for every w ∈ TxM . Therefore, a direct estimation leads to∣∣∣∣∣
∫
R×M

kε(s, v)f(Φv(x), (ρ(t+ s),m(t+ s), µ(t+ s))) dν(t, x)−
∫
[0,1]×M

f(x, (ρ(t),m(t), µ(t))) dν(t, x)

∣∣∣∣∣
≤ ε2J (ρ,m, µ) ,

and as a consequence the desired result,

J (ρε,mε, µε) ≤ J (ρ,m, µ) + ε2J (ρ,m, µ) .

Since this averaging reduces to standard convolution in the coordinate chart U in a small neigh-
borhood of x0, it implies that (ρε,mε, µε) is smooth in a neighborhood of x0 and ρε ≥ ε1 vol. By
compactness of M , iterating a finite number of times this argument gives the desired path. □

Next, we imply the equivalence between both formulations above and a particular UOT problem
introduced in Section 2.
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3.1.3. Kantorovich formulation and dual formulation. As in [9] the application of Fenchel-Rockafellar
Duality Theorem gives the dual formulation of WFR. This is summarized in the following proposi-
tion.

Proposition 12 (Dual formulation of WFR). The following equality holds on (M, g),

WFR2(ρ0, ρ1) = sup
(ϕ,ψ)∈C(M)2

∫
M

ϕ(x) dρ0(x) +

∫
M

ψ(y) dρ1(y)

subject to the constraint {
ϕ(x) ≤ 1 , ψ(y) ≤ 1 ,

(1− ϕ(x))(1− ψ(y)) ≥ cos2 (d(x, y) ∧ (π/2)) ,

for every (x, y) ∈M2. Setting z0 = − log(1−ϕ) and z1 = − log(1−ψ) a reformulation of this linear
optimization problem is

(3.5) WFR2(ρ0, ρ1) = sup
(z0,z1)∈C(M)2

∫
M

(
1− e−z0(x)

)
dρ0(x) +

∫
M

(
1− e−z1(y)

)
dρ1(y)

subject to

(3.6) z0(x) + z1(y) ≤ − log
(
cos2 (d(x, y) ∧ (π/2))

)
,

for every (x, y) ∈M2.

Interestingly this last formulation is exactly the dual formulation of UOT defined in Proposition
2 for c(x, y) = − log

(
cos2 (d(x, y) ∧ (π/2))

)
and dual entropy functions F ∗

0 (x) = F ∗
1 (x) = F ∗(x) =

ex − 1. The existence of Lipschitz solutions to the dual problem is proved in Corollary 8, under the
admissibility condition on the measures, see Section 2.2. Without these assumptions, the existence
of potentials can be proved in a less regular space of functions, see [33, Section 6.2].

Proposition 13 (Kantorovich formulation of WFR). The following equality holds true on M

(3.7) WFR2(ρ0, ρ1) = inf
γ∈M+(M2)

KL(p1∗γ, ρ0) + KL(p2∗γ, ρ1)

−
∫
M2

log(cos2(d(x, y) ∧ (π/2))) dγ(x, y) .

3.2. The formal Riemannian submersion and Monge formulation of WFR. OT supports
an interesting geometric framework. Indeed, the push-forward action of the diffeomorphisms group
on the space of densities is a (formal) Riemannian submersion to the space of densities endowed
with the Wasserstein metric, see [25, 16] for more details. This structure also exists in the case of
UOT, as already explained in [22]. We briefly recall it hereafter.

Recall that a Riemannian submersion is a submersion π between two Riemannian manifolds M
and N , such that dπ is an isometry from the orthogonal of its kernel onto its range. An important
property of Riemannian submersion is that every geodesic on N can be lifted (called horizontal lift)
to a unique geodesic on M (having the same length), up to the choice of a basepoint in M . In
the following, the roles of M and N are taken by Diff(M), the group of diffeomorphisms of M and
Densp(M) the space of probability densities on M . We choose a reference volume form ρ0 on M
and define

π0 : Diff(M) → Densp(M)

π0(φ) = φ∗ρ0

which is a (formal) Riemannian submersion of the metric L2(M ; ρ0) on Diff(M) to the Wasserstein
W2 metric on Densp(M). Using the horizontal lift property of geodesics mentioned above, the
Benamou and Brenier dynamic formulation [3] can be rewritten on the group Diff(M) as the Monge
problem,

W2(ρ0, ρ1)
2 = inf

φ∈Diff(M)

{∫
M

d2M (φ(x), x) ρ0(x) dvol(x) : φ∗ρ0 = ρ1

}
.
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In the unbalanced case, the group Diff(M) is replaced with the semidirect product of groups
between Diff(M) and the space of positive functions on M which is a group under pointwise multi-
plication. It is not a direct product but a semidirect one, where the composition law is defined such
that the map π1 given by

π1 : (Diff(M)⋉ C(M,R>0))×Dens(M) 7→ Dens(M)

π1 ((φ, λ), ρ) := φ∗(λρ)

is a left-action of the group Diff(M)⋉C(M,R>0) on the space of densities. Similarly to the optimal
transport case, this action is actually a Riemannian submersion between L2(M,C (M); ρ0) and
Dens(M) endowed with the WFR metric. Note that the L2 metric is defined by a density (the
initial density) on M and the cone metric on C (M) defined in Section 3.1.2 (see [18] for more
details), namely

H(x,m)( dx, dm) = a2mgx + b2
dm2

m
·

Up to the change of variable m = r2, we find that the metric can be rewritten as

(3.8) h(x,r)( dx, dr) = a2r2gx + 4b2 dr2 ,

which is called a cone metric1, see equation (3.3). Since it is a classical formulation of this metric,
we adopt this change of variable in the rest of the paper. In particular, the action is changed into

πρ : (Diff(M)⋉ C(M,R>0))×Dens(M) → Dens(M)

πρ ((φ, λ), ρ) := φ∗(λ
2ρ) ,

and the metric on C (M) is the cone metric (3.8). As done in [22] we can identify this semidirect
product of groups with the automorphism group of the cone C (M) (since it has a multiplicative
group structure in the R>0 component). Thus, to shorten the notations, we use Aut(C (M)) instead
of Diff(M)⋉C(M,R>0). We now state the (formal) Riemannian submersion result obtained in [22].

Proposition 14. Let ρ0 ∈ Dens(M) be a positive density and π be the map

π : Aut(C (M)) → Dens(M)

π(φ, λ) = φ∗(λ
2ρ0) .(3.9)

Then, π is a Riemannian submersion between Aut(C (M)) endowed with the metric L2(M,C (M); ρ0)
and Dens(M) with the WFR metric.

For details about the proof, we refer the reader to [22]. This proposition can be used to deduce
a static or Monge formulation of the variational problem.

Definition 8. Let (ρ0, ρ1) ∈ M+(M
2). The Monge formulation of WFR is given by

M-WFR2(ρ0, ρ1) = inf
(φ,λ)

{∫
M

d2C (M) ((x, 1), (φ(x), λ(x))) dρ0(x) : φ∗(λ
2ρ0) = ρ1

}
,(3.10)

= inf
(φ,λ)

{
d2Aut(C (M))

((Id, 1), (φ, λ)) : φ∗(λ
2ρ0) = ρ1

}
where the infimum is taken over (φ, λ) ∈ Diff(M) ⋉ C(M,R>0) and (Id, 1) denotes the identity in
Aut(C (M)).

This Monge formulation extends to more general divergences and costs. Indeed, one can formulate

M-UOT2(ρ0, ρ1) = inf
(φ,λ)

{∫
M

DC (M) ((x, 1), (φ(x), λ(x)))
2
dρ0(x) : φ∗(λ

2ρ0) = ρ1

}
,

where

(3.11) DC (M)((x, r), (y, s))
2 = inf

z∈R>0

(
r2F0(z/r

2) + s2F1(z/s
2) + c(x, y)z

)
.

1It is interesting to check that other Riemannian metrics on the cone can be chosen provided they are two-

homogeneous in the radial variable. Some of the results of this article carry over such cases.
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Let us remark that the quantity2 DC (M) is not necessarily a power of a distance on the cone but it
is the case in the three following situations. When F0 = F1 is the relative entropy, and c(x, y) =
− log(cos(d(x, y) ∧ π

2 )
2) the function DC (M)((x, r), (y, s)) is almost the distance on the cone but

not exactly3 since DC (M)((x, r), (y, s))
2 = r2 + s2 − 2rs cos(d(x, y) ∧ π

2 ). In this case, he equality
between the two seemingly different Monge formulations holds. For F0 = F1 is the relative entropy
and c(x, y) = d(x, y)2 (Gaussian-Hellinger case), there holds DC (M)((x, r), (y, s))

2 = r2 + s2 −
2rse−d(x,y)

2/2. The last known case is for partial optimal transport where the divergences are taken
as the total variation of measures given by the entropy function F (x) = |x − 1| and the cost is
c(x, y) = dq(x, y), for q ≥ 1. Then, DC (M)((x, r), (y, s))

q = r + s − (min(r, s))min(0, 2 − d(x, y)q)
gives a distance.

A consequence of the semi-couplings formulation is the relaxation inequality M-WFR2(ρ0, ρ1) ≥
WFR2(ρ0, ρ1). Indeed, it is sufficient to consider, for any ϕ, γ(x, y) = (Id, ϕ)#ρ0, γ0(x, y) = γ(x, y)
and γ1(x, y) = λ2(x)γ(x, y). The converse inequality does not hold in general since in the case of
unbalanced transport not only the particles can split but also they can reach the apex of the cone.

However under our admissibility condition on (ρ0, ρ1) we prove that M-WFR2(ρ0, ρ1) = WFR2(ρ0, ρ1)
in Proposition 17.

3.3. Kantorovich relaxation: the conic formulation. Introduced in [33], the following impor-
tant formulation can be interpreted as a natural Kantorovich relaxation of the Monge formulation.
The idea is to consider the pair (φ, ρ) as a stochastic object. From a cost on the cone defined by
minimization in (3.11), one defines the conic formulation

C-OT(ρ0, ρ1) = inf
γ∈Γ̃

∫
C (M)2

DC (M)((x, r), (y, s))
2dγ((x, r), (y, s)) ,

where Γ̃ denotes the set of positive Radon measures γ on C (M)2 such that{
ρ0(x) =

∫
R r

2[p1∗γ](x, dr) ,

ρ1(y) =
∫
R s

2[p2∗γ](y, ds) .

The last conditions are moment constraints rather than marginal ones as is the case in standard OT.
Moreover, this formulation does not require the plan to be a probability measure on the product
space although it can also be restricted to the set of probability measures by action with dilations,
see [33, 21]. In fact, formula (3.11) is 2-homogeneous so that the mass can always be rescaled
pointwisely. Last, the moment constraint is the natural relaxation of the action by pushforward and
rescaling φ∗(λ

2ρ0). Note that from the numerical point of view, introducing this additional radial
variable is costly, yet it is amenable to entropic regularization, see [42]. The proof of equivalence
with the formulations introduced above can be found in [33]. For our purpose and to prepare the
discussion of c-convex functions in Section 4, we simply note that the dual solutions of this problem
are also dual solutions of an OT problem; the optimal potentials take the form (x, r) 7→ r2p(x) and
(y, s) 7→ s2q(y) for functions p, q defined on M . These potentials are 2-homogeneous functions in
the radial variable by construction.

3.4. Monge solution and polar factorization on the automorphism group. The geometric
structure used to show Brenier’s polar factorization theorem [6] in standard optimal transport relies
on the Riemannian submersion and solution of Monge problem. Thanks to results given in Section 3.2
and after finding a solution to the Monge problem M-WFR we generalize in this section polar
factorization to the unbalanced framework.

2Note that with respect to the first section we made the slight change of variable with the square root to remain

consistent with the definition of the group action.
3For the cone distance, the minimum is taken with π rather than π/2, this difference is explained by the fact that

at the level of the measures, the transformation can occur simultaneously for both Dirac masses.
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3.4.1. Monge solution of WFR. To show the existence of a solution to Monge problem (3.10) we
start by solving WFR(ρ0, ρ1), in the dual form (3.5), (3.6) and we provide geometric properties of
such solution (see Proposition 16). To prove Proposition 16 there are two different arguments: one
is based on results in Section 2 and the existence of Lipschitz potentials (Proof 1); the other one
mimics the standard case of optimal transport with minor adaptions due to the cost (Proof 2). This
latter approach leads to a pair of approximately differentiable potentials. For completeness, we give
both proofs. For simplicity, introduce the notation dπ/2(x, y) = d(x, y) ∧ (π/2).

Lemma 15. For every y ∈M , the function x 7→ g(x) = cos2
(
dπ/2(x, y)

)
is sub-differentiable.

Proof. The function d(·, y) is super-differentiable see the proof of [36, Proposition 6] for instance.
Therefore, dπ/2(·, y) is also super-differentiable and the function g is sub-differentiable as the com-

bination of a decreasing C1 function and the super-differentiable function x 7→ dπ/2(x, y), see [36,
Lemma 5]. □

Recall that, for a cost c such that y 7→ ∇xc(x, y) is injective on its domain of definition (twist
condition), the c-exponential map at a point x is defined by the identity c-expx(v) = y if and only

if v = −∇xc(x, y). We denote by ∇̃z(x) the approximate differential of a function z : M → R at a
point x.

Proposition 16 (Brenier’s variational solution of WFR-Monge-Ampère). Let (ρ0, ρ1) ∈ M+(M
2)

and let (z0, z1) be generalized optimal potentials for WFR2(ρ0, ρ1). Suppose that (ρ0, ρ1) is admissible
and ρ0 is absolutely continuous w.r.t vol, then z0 is ρ0 a.e. unique and approximate differentiable
on Supp(ρ0). The optimal plan γ in (3.7) is unique, with marginals γ0 = e−z0ρ0, γ1 = e−z1ρ1 and
concentrated on the graph of

(3.12) φ(x) = expx

(
− arctan

(
∥∇̃z0(x)∥

2

)
∇̃z0(x)
∥∇̃z0(x)∥

)
= c-expx(−∇̃z0(x)) ,

that is φ∗γ0 = γ1 and γ = (Id×φ)∗γ0. Finally

(3.13) WFR2(ρ0, ρ1) =

∫
M

(
1− e−z0(x)

)
dρ0(x) +

∫
M

(
1− e−z1(y)

)
dρ1(y) .

Note that (z0, z1) may not be continuous as needed in (3.5) but (3.13) still holds true. We start
by giving a simple sketch of the proof following the results in Section 2. We then provide in proof
2 the approximate differentiability property and we discuss the corresponding formulation of the
Monge-Ampère equation.

Proof 1. Corollary 8 gives a pair of Lipschitz potentials (z0, z1) solution to the dual formulation
(2.2) of WFR2(ρ0, ρ1). By Lemma 3, the pair (z0, z1) is also a solution of a classical Optimal
transport problem between γ0 = e−z0ρ0, γ1 = e−z1ρ1 for the cost c(x, y) = − log

(
cos2

(
dπ/2(x, y)

))
.

The hypothesis on ρ0 and classical optimal transport theory arguments give the existence of a map
φ(x) = c-exp(−∇̃z0(x)) solution of this OT problem. In particular φ∗γ0 = γ1. □

Following the strategy in the proof of Theorem 4, since φ(x) = c-exp(−∇̃z0(x)) solves a classical
optimal transport problem, higher regularity of z0 gives higher regularity of marginals γ0 and γ1
and, in turn, a bootstrap argument improves the regularity of z0.

Proof 2. (Approximate differentiability). The proof is an adaptation of [33, Theorem 6.7] using ar-
guments in [36, 47]. In particular, we use the notation of [33]. Let (z0, z1) be a pair of generalized
optimal potentials for WFR2(ρ0, ρ1) and γ an optimal coupling in formulation (3.7), see [33, The-
orem 6.3]. We define the associated densities σi = e−zi , i = 0, 1. Since ρ0 and ρ1 are admissible
[33, Theorem 6.3,b] implies supp(p1∗(γ)) = supp γ0 = supp ρ0 and supp(p2∗(γ)) = supp γ1 = supp ρ1.
Therefore, there exist Borel sets Ai ⊂ supp ρi with ρi(M \Ai) = 0 such that

σ0(x)σ1(y) ≥ cos2(dπ/2(x, y)) inA0 ×A1 ,(3.14)

σ0(x)σ1(y) = cos2(dπ/2(x, y)) γ -a. e. inA0 ×A1 .(3.15)
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To construct the set of approximate differentiability, define

A1,n := {y ∈M ; σ1(y) ≥ 1/n} ,

and consider the function

s0,n(x) = sup
y∈A1,n

cos2(dπ/2(x, y))

σ1(y)
.

By construction, s0,n is bounded, Lipschitz and thus differentiable vol-a.e. on M . By definition,
we have σ0 ≥ s0,n and thus the sequence of sets A0,n := {x ∈M ; σ0(x) = s0,n(x)} is increasing.
Because of (3.15), the set

⋂∞
n=1(X \A0,n) is ρ0-negligible. Let

A′
0,n =

{
x ∈ A0,n ; lim

r→0

vol(B(x, r) ∩A0,n)

vol(B(x, r))
= 1 and s0,n is differentiable at x

}
be the set of points of A0,n with vol-density 1 and where s0,n is differentiable. Then

⋂∞
n=1(X \A′

0,n)
is ρ0-negligible as well. Let (x̄, ȳ) ∈ A′

0,n ×A1,n be such that

s0,n(x̄)σ1(ȳ) = cos2(dπ/2(x̄, ȳ)) = σ0(x̄)σ1(ȳ) .

Using (3.14), for all x ∈ A1, there holds

σ1(ȳ) ≥ cos2(dπ/2(x, ȳ))/s0,n(x) .

In particular, cos2(dπ/2(x, ȳ))/s0,n(x) achieves its maximum at x̄, implying 0 ∈ ∇+
x̄ (cos

2(dπ/2(·, ȳ))/s0,n(·))
(that is, 0 is a supergradient of x 7→ cos2(dπ/2(x, ȳ))/s0,n(x)) at x̄). Since s0,n is differentiable at

x̄, the function x 7→ cos2(dπ/2(x, ȳ)) is super-differentiable at x̄. By Lemma 15, it is also sub-
differentiable and thus differentiable at x̄. Therefore,

0 =
∇ cos2

(
dπ/2(x̄, ȳ))

)
s0,n(x̄)

− cos2(dπ/2(x̄, ȳ))
∇s0,n(x̄)
s20,n(x̄)

= −
cos2(dπ/2(x̄, ȳ))

s0,n(x̄)

(
2 tan(dπ/2(x̄, ȳ))∇

(
√
2

√
1

2
d2π/2(x̄, ȳ)

)
+∇ ln s0,n(x̄)

)

= −σ1(ȳ)
(
2 tan(dπ/2(x̄, ȳ))

dπ/2(x̄, ȳ)
∇
(
1

2
d2π/2(x̄, ȳ)

)
+∇ ln s0,n(x̄)

)
.(3.16)

Let v ∈ Tx̄M be the unique vector such that ȳ = expx̄(v). Then, v = −∇
(

1
2d

2
π/2(x̄, ȳ)

)
and (3.16)

implies

(3.17) ∇̃z0(x̄) = −∇̃ lnσ0(x̄) = −∇ ln s0,n(x̄) = −2 tan(∥v∥) v

∥v∥
.

Therefore, ȳ is unique ρ1 a.e. and given by

ȳ = expx̄ (v) = expx̄

(
− arctan

(
∥∇̃z0(x̄)∥

2

)
∇̃z0(x̄)
∥∇̃z0(x̄)∥

)
= φ(x̄) .

As a consequence, γ is concentrated on the graph of φ in particular γ = (Id×φ)∗ γ0 and φ∗γ0 = γ1.
The strict convexity of KL implies that the marginals γ0 and γ1 are unique [33, Theorem 6.7] thus

z0 = − log(σ0) = − log

(
dγ0
dρ0

)
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is unique ρ0 a.e. and γ is also unique. Note that we used the admissible condition to say that σ0 is
ρ0 a.e. positive. In order to prove (3.13), we start from (3.7) and a direct computation yields

WFR2(ρ0, ρ1) = KL(γ0, ρ0) + KL(γ1, ρ1) +

∫
M2

c(x, y) dγ(x, y)

(3.18)

=

∫
M

log
(
e−z0

)
e−z0 dρ0 +

∫
M

(1− e−z0) dρ0 +

∫
M

log
(
e−z1

)
e−z1 dρ1 +

∫
M

(1− e−z1) dρ1

+

∫
M2

c(x, φ(x)) dγ(x)

=

∫
M

(1− e−z0) dρ0 +

∫
M

(1− e−z1) dρ1 +

∫
M

(c(x, φ(x))− z0(x)− z1(φ(x))) dγ0(x)

=

∫
M

(1− e−z0) dρ0 +

∫
M

(1− e−z1) dρ1.

□

As a consequence of the underlying classical OT structure, the potential z0 found in Proposition 16
is a solution to a Monge-Ampère equation with a right-hand side that also depends on the potential.
Let us recall how to derive the equation, assuming that the optimal potential z0 is of class C

2. For the
sake of readability, we denote z0 by z. Recall that, by definition, c-expx(v) = [(−∇xc)(x, ·)]−1

(v),
which gives

c-expx(v) = expx

(
− arctan

(
∥v∥
2

)
v

∥v∥

)
,

for c(x, y) = − log(cos2(dπ/2(x, y)). By equation (3.17) above, ∇z satisfies

(3.19) ∇z(x)− (∇xc)(x, φ(x)) = 0 .

Identity (3.19) is equivalent to

φ(x) = c-exp(−∇z(x)),
by definition of c-exp. Differentiating (3.19) with respect to x and taking the determinant yields

(3.20) det
[
−∇2z(x) + (∇2

xxc)(x, φ(x))
]
= |det [(∇x,yc)(x, φ(x))]| |det(∇φ)| .

Notice that, by c-concavity of z, the symmetric matrix −∇2z + (∇2
xxc)(x, φ(x)) is non-negative.

Note that φ∗
(
(1 + 1

4∥∇z∥
2)e−2zρ0

)
= ρ1 (see the proof of Proposition 17 below) or, equivalently,

|det(∇φ)| = e−2z

(
1 +

1

4
∥∇z∥2

)
f

g ◦ φ
,

where f , respectively g, are Radon-Nikodym densities of ρ0, respectively ρ1, with respect to vol.
Together with (3.20), we deduce the WFR-Monge-Ampère equation

(3.21) det
[
−∇2z(x) + (∇2

xxc)(x, φ(x))
]

= |det [(∇x,yc)(x, φ(x))]| e−2z(x)

(
1 +

1

4
∥∇z(x)∥2

)
f(x)

g ◦ φ(x)
,

where φ is given by (3.12) and satisfies the second boundary value problem: φ maps supp ρ0 towards
supp ρ1.

Remark 6. Another possibility is to write directly the Monge-Ampère equation satisfied by φ as an
optimal map pushing γ0 to γ1, that is,

det
[
−∇2z(x) + (∇2

xxc)(x, φ(x))
]
= |det [(∇x,yc)(x, φ(x))]|

e−z0(x)ρ0(x)

e−z1(φ(x))ρ1 ◦ φ(x)
·

Using z0(x) + z1(φ(x)) = c(x, φ(x)) and 1 + 1
4∥∇z0(x)∥

2 = ec(x,φ(x)) one recovers equation (3.21).
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Remark 7. Following Brenier [6, Section 1.4] Proposition 16 can be taken as a definition of vari-
ational solutions for the WFR-Monge-Ampère equation (3.21) with second boundary value problem.
The question of regularity of such a solution is a consequence of Theorem 4 in Section 2: it relies on
regularity of classical a classical OT with cost c and, therefore, on the study of the Ma-Trudinger-
Wang tensor associated to c see [11], [47, Chapter 12]. Note that partial regularity results such as
one given in [14] can also be deduced from Theorem 4.

Thanks to Proposition 16 we are now able to prove the existence, under some assumptions on the
initial density, of a solution to the Monge problem M-WFR.

Proposition 17 (Solution of the Monge problem M-WFR and equivalence to WFR). Let (ρ0, ρ1)
be admissible and such that ρ0 is absolutely continuous w.r.t. vol. Then, there exists a ρ0-a.e.
unique c-concave function z :M → R, approximatively differentiable ρ0-a.e., such that the associated
unbalanced transport couple (φ, λ) defined by

φ(x) = expx

(
− arctan

(
1

2
∥∇̃z(x)∥

)
∇̃z(x)
∥∇̃z(x)∥

)
,(3.22)

λ(x) = e−z(x)
√
1 +

1

4
∥∇̃z(x)∥2(3.23)

is a solution of the Monge problem (3.10) and satisfies

(3.24) π[(φ, λ), ρ0] = φ∗
(
λ2ρ0

)
= φ∗

((
1 +

1

4
∥∇̃z∥2

)
e−2zρ0

)
= ρ1 .

Moreover, (φ, λ) is the unique ρ0-a.e. unbalanced transport couple associated to a c-concave potential,
also unique, such that π[(φ, λ), ρ0] = ρ1. The potential z is characterized by

(3.25) M-WFR2(ρ0, ρ1) = WFR2(ρ0, ρ1) =

∫
M

(1− e−z(x)) dρ0(x) +

∫
M

(1− e−ẑ(y)) dρ1(y) ,

where ẑ(y) = infx∈supp ρ0 c(x, y)− z(x).

Proposition 17 appeared first in a preprint by the first and third author in [23, Proposition 16].
Since then, related results were given with the aim of numerical application in [40] and for a more
theoretical use in [34].

Proof. We start by proving existence of solution for Monge problem. Let (z0, z1) be optimal po-
tentials for WFR2(ρ0, ρ1). Then ẑ0 = z1. Set σi(x) = e−zi(x), i = 0, 1. From Proposition 16, we

know that x 7→ φ(x) = expMx

(
− arctan

(
∥∇̃z0(x)∥

2

)
∇̃z0(x)

∥∇̃z0(x)∥

)
is well defined ρ0 a.e. and φ∗(γ0) = γ1

where γi = σiρi, i = 0, 1. Therefore

ρ1 = σ−1
1 γ1 = σ−1

1 φ∗(γ0) = σ−1
1 φ∗ (σ0ρ0)

= φ∗
(
e−z0σ−1

1 ◦ φρ0
)
= φ∗

(
e−z0ez1◦φρ0

)
= φ∗

(
e−z0ec(·,φ(·))e−z0ρ0

)
= φ∗

(
e−2z0

(
1 +

1

4
∥∇̃z0∥2

)
ρ0

)
= φ∗

(e−z0√1 +
1

4
∥∇̃z0∥2

)2

ρ0


= π

[(
φ, e−z0

√
1 +

1

4
∥∇̃z0∥2

)
, ρ0

]
.

where we use that ρ0 a.e. z0(x) + z1(φ(x)) = c(x, φ(x)), 1 + tan2(x) = 1/ cos2(x) and thus 1 +
1
4∥∇̃z0(x)∥

2 = ec(x,φ(x)) . Equation (3.13) is exactly (3.25).
To prove uniqueness, consider z to be a c-concave function, such that (φ, λ) are well defined

through (3.22), (3.23) and π[(φ, λ), ρ0] = ρ1. Then, we claim that γ = (Id×φ)∗(e−zρ0) is an optimal
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plan for WFR2(ρ0, ρ1) in (3.7). Indeed, let us check that γ satisfies the optimality conditions of [33,
Theorem 6.3(b)], namely that its marginal γi is absolutely continuous w.r.t. ρi, i = 0, 1 and

e−z(x)−ẑ(y) ≥ cos2(dπ/2(x, y)), ∀(x, y) ∈M ×M,

e−z(x)−ẑ(y) = cos2(dπ/2(x, y)), γ-a.e. (x, y) ∈M ×M.

Indeed, by definition of φ,
z(x) + zc(φ(x)) = c(x, φ(x)) ,

holds ρ0-a.e., and therefore γ0 = e−zρ0-a.e. As a consequence, γ is concentrated on the set of
equality for a pair (z, zc) of c-concave functions, that is, (z, zc) satisfies for all (x, y) ∈ M ×M ,
z(x) + zc(y) ≤ c(x, y) with equality γ-a.e. Moreover, for ρ0 almost every x ∈M there holds

λ2(x) = e−2z(x)(1 +
1

4
∥∇̃z(x)∥2) = e−z(x)ez

c(φ(x)) ,

whence
ρ1 = φ∗(λ

2ρ0) = φ∗(e
zc(φ(x))e−z(x)ρ0) = ez

c

φ∗(γ0) = ez
c

γ1 .

Thus γ1 = e−z
c

ρ1 and γ is optimal for WFR2(ρ0, ρ1). As a consequence, the equality M-WFR2(ρ0, ρ1) =
WFR2(ρ0, ρ1) holds. The computation (3.18) yields (3.25) and uniqueness of the generalized optimal
potentials for WFR2(ρ0, ρ1) in Proposition (16) implies uniqueness of (z, φ, λ). □

3.4.2. Polar factorization. We end this section by showing a polar factorization theorem for the
automorphism group of the cone Aut(C (M)). In the sequel, we denote by Mes(X,Y ) the set of
measurable maps from a metric space X to a metric space Y .

Definition 9. The generalized automorphism semigroup of C (M) is the set of measurable maps

Aut(C (M)) = Mes(M,M)⋉Mes(M,R>0) ,

endowed with the semigroup law

(φ1, λ1) · (φ2, λ2) = (φ1 ◦ φ2, (λ1 ◦ φ2)λ2) .

The stabilizer of the volume measure is defined as

Autvol(C (M)) =
{
(s, λ) ∈ Aut(C (M)) : π ((s, λ), vol) = vol

}
,

where π is the submersion defined in (3.9), see Proposition 14. By abuse of notation, any (s, λ) ∈
Autvol(C (M)) will be denoted

(
s,
√
Jac(s)

)
meaning that for every continuous function f ∈ C(M,R)

(3.26)

∫
M

f(s(x))
√
Jac(s)

2
d vol(x) =

∫
M

f(x) d vol(x) .

We denote by T(x,r)C (M) ∋ (v, t) 7→ exp
C (M)
(x,r) (v, t) the exponential map for the cone metric on

C (M).

Theorem 18 (Polar factorization). Let (ϕ, λ) ∈ Aut(C (M)) be such that the measure ρ1 :=
π [(ϕ, λ), vol] is absolutely continuous with respect to vol and (vol, ρ1) is admissible. Then M-UOT2(vol, ρ1)
admits a unique minimizer, which is characterized by a c-concave function z0. Moreover, there ex-
ists a unique measure preserving generalized automorphism (s,

√
Jac(s)) ∈ Autvol(C (M)) such that

vol-a.e.

(ϕ(x), λ(x)) = exp
C (M)
(x,1)

(
−1

2
∇̃pz0(x),−pz0(x)

)
◦ (s(x),

√
Jac(s)(x))

or equivalently

(ϕ, λ) =

(
φ, e−z0

√
1 + ∥∇̃z0∥2

)
· (s,

√
Jac(s)) ,

where pz0 = ez0 − 1 and

φ(x) = expx

(
− arctan

(
1

2
∥∇̃z0(x)∥

)
∇̃z0(x)
∥∇̃z0(x)∥

)
.
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Moreover (s,
√
Jac(s)) is the unique L2(M,C (M); ρ0) projection of (ϕ, λ) onto Autvol(C (M)).

Proof. Define ρ0 := vol. Let (z0, z1) be a solution of WFR2(ρ0, ρ1) and γ be an optimal unbalanced
transport plan. By symmetry, (z1, z0) is a solution of WFR2(ρ1, ρ0) and γ

t is an optimal unbalanced
transport plan. Let finally (φ0, λ0) and (φ1, λ1) be the two transport couples given by application
of Proposition 16 to (ρ0, ρ1) and (ρ1, ρ0). We split the proof into four steps. We denote by dom(f)
the domain of definition of a function f .

Step 1: φ0 and φ1 are inverse maps. On U = φ−1
0 (dom ∇̃z1) ∩ dom(∇̃z0) which has full γ0

measure and, therefore, full ρ0 measure (we use here the admissible condition to say that γ0 and ρ0
have the same support), we have

z0(x) + z1(φ0(x)) = c(x, φ0(x))

and thus φ1(φ0(x)) = x. Similarly, it holds φ0(φ1(y)) = y on V = φ−1
1 (dom ∇̃z0)∩dom(∇̃z1) which

has full ρ1 measure.

Step 2: (φ0, λ0) and (φ1, λ1) are inverse in Aut. From Step 1, identity φ0(φ1(y)) = y holds
ρ1-a.e.. Thus, ρ1 a.e.

(φ0, λ0) · (φ1, λ1) = (φ0 ◦ φ1, λ0 ◦ φ1λ1) = (Id, (λ0 ◦ φ1)λ1) .

Moreover by (3.24) of Proposition 17 applied twice

π [(φ0, λ0) · (φ1, λ1), ρ1] = π [(φ0, λ0), π [(φ1, λ1), ρ1]] = π [(φ0, λ0), ρ0] = ρ1 .

It implies that

π [(Id, (λ0 ◦ φ1)λ1), ρ1] = π [(φ0, λ0) · (φ1, λ1), ρ1] = ρ1 .

In other words, we have ρ1 a.e. (λ0 ◦ φ1)λ1 = 1 and ρ1 a.e.

(φ0, λ0) · (φ1, λ1) = (Id, 1) .

Step 3: polar factorization. Let (s, λs) = (φ1, λ1) · (ϕ, λ) = (φ1 ◦ϕ, λ1 ◦ϕλ). By construction,
one has

π [(s, λs), ρ0] = π [(φ1, λ1) · (ϕ, λ), ρ0] = π [(φ1, λ1), π [(ϕ, λ), ρ0]] = π [(φ1, λ1), ρ1] = ρ0 .

Therefore, (s, λs) belongs to Autvol and λs =
√

Jac(s) holds in the weak sense (3.26). Thus

(ϕ, λ) = (Id, 1) · (ϕ, λ) = (φ0, λ0) · (φ1, λ1) · (ϕ, λ) = (φ0, λ0) · (s,
√

Jac(s)) .

It proves the polar factorization.
Step 4: Uniqueness. The pair of c-concave potentials (z0, z1) is optimal for WFR(ρ0, [(φ0, λ0), ρ0]) =

WFR(ρ0, ρ1) and therefore by Proposition 17, zi are unique ρi a.e.. We deduce that the projec-

tion (s,
√

Jac(s)) = (φ1, λ1) · (ϕ, λ) is also unique ρ0 a.e.. Indeed the positivity of λ implies that
supp(λ2ρ0) = supp ρ0, thus ϕ maps supp ρ0 onto supp ρ1 and the uniqueness of φ1 and λ1, ρ1 a.e.,

implies the uniqueness of s and
√
Jac(s), ρ0 a.e.. To prove that (s,

√
Jac(s)) is the L2(M,C (M); ρ0)

projection of (ϕ, λ) onto Autvol(C (M)), we observe

inf
(σ,
√

Jac(σ))∈Autvol(C (M))

∫
M

d2C (M)

(
(ϕ, λ), (σ,

√
Jac(σ))

)
ρ0 ≥ WFR2(ρ0, ρ1)

=

∫
M

d2C (M)

(
(φ0, λ0), (Id, 1)

)
ρ0

=

∫
M

d2C (M)

(
(φ0, λ0) · (s,

√
Jac(s)), (s,

√
Jac(s))

)
ρ0

=

∫
M

d2C (M)

(
(ϕ, λ), (s,

√
Jac(s))

)
ρ0 ,

which gives the result. □
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As in OT, it is possible to drop the absolute continuity assumption on ρ1 and extend Theorem
18 to this setting. In such a case, one loses the uniqueness of the measure preserving generalized
automorphism (s,

√
Jac(s)). Another extension is to project on the subset of Aut(C (M))

Autρ0,µ0(C (M)) =
{
(s, λ) ∈ Aut(C (M))

∣∣π ((s, λ), ρ0) = µ0

}
,

in the spirit of [46, Theorem 3.15]. The proof is similar to the one given above. Last, the linearization
of this polar factorization leads to a Helmholtz decomposition for velocity vector fields.

Remark 8 (Polar decomposition for other cost functions). As explained previously, Remark 6,
Proposition 16, Proposition 17 and Theorem 18 are not limited to the case of WFR metric and can
be deduced for more general costs. For instance, a similar analysis for the Gaussian-Hellinger case
in Rd is even easier to compute. Indeed, in this setting the optimal potential z is semi-concave, thus
φ turns out to be the gradient of a convex function

φ(x) = x−∇z(x),
and

λ(x) = e−z(x)+
1
4∥∇z(x)∥

2

.

This formulation can be particularly adapted for statistical or numerical applications, which we leave
for future work.

4. The Ma-Trudinger-Wang tensor in the WFR case: relations between c-convex
functions and d2C (M)-convex functions

In this section we investigate the link between c-convex functions on the base spaceM and d2C (M)-

convex functions on C (M). As a consequence, we provide a relation between the MTW-tensor on
M for the cost c and the MTW-tensor on C (M) for the cost d2C (M).

We prove two fundamental facts. Lemma 19 states that a function is c-convex on M if and
only if its (suitably defined) lift is d2C (M)-convex on C (M). Lemma 20 is concerned with explicit

computations along c-segments.
Let us recall the definition of cost-convex functions.

Definition 10. [47, Definition 5.2] Let X × Y ⊂ M ×M be a subset and c be a cost function on
X × Y . A function f : X → R ∪ {+∞} is c-convex if it is not identically +∞ and if there exists a
function g : Y → R ∪ {±∞} such that, for every x ∈ X, f(x) = gc(x), where gc is the c-conjugate
of g, i.e.,

gc(x) := sup
y∈Y

g(y)− c(x, y) .

The c-subdifferential of f at point x̄, denoted by ∂cf(x̄), is the set of y ∈ Y such that, for every
x ∈ X,

f(x) ≥ f(x̄) + c(x̄, y)− c(x, y).

By definition, f is c-convex if and only if, for every x̄ ∈ X, the set ∂cf(x̄) is not empty.
In the sequel we set cos+(x, y) := cos

(
dπ/2(x, y)

)
and we consider the cost c(x, y) = − log(cos2+(x, y)).

The corresponding distance on the cone is given by

d2C (M)((x, r), (y, s)) = r2 + t2 − 2rt cos+(x, y).

Definition 11. Given a function f : M → R we define the lift of f to C (M) as the function
Ff : C (M) → R

Ff (x, r) = r2(ef(x) − 1).

This definition naturally arises, recalling that formulation (3.5) of WFR metric can be seen as a
dual formulation on the cone.

Lemma 19. Let X × Y ⊂M ×M and f :M → R. Then f is c-convex on X × Y if and only if Ff
is d2C (M)-convex on (X ×R+)× (Y ×R+). In particular, given (x̄, r̄) ∈ X ×R+, y ∈ ∂cf(x̄) if and

only if (y, s) ∈ ∂ d2
C(M)

Ff (x̄, r̄) where s = r̄ ef(x̄)

cos+(x̄,y) . Finally, (Ff )
d2

C(M) = Ffc .
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The last statement in Lemma 19 says that the lift of the c-conjugate of f coincides with the
d2C (M)-conjugate of the lift of f .

Proof. By Definition 10, it is sufficient to prove the second statement.
The function f is c-convex on X × Y , if and only if for every x̄ ∈ X the c-subdifferential of f at

x̄ is not empty. In particular, for every x̄ ∈ X there exists y ∈ Y such that, for every x ∈ X,

f(x) ≥ f(x̄) + c(x̄, y)− c(x, y)

= f(x̄)− log(cos2+(x̄, y)) + log(cos2+(x, y)),

or, equivalently, for every x ∈ X,

(4.1) ef(x)−f(x̄)
cos2+(x̄, y)

cos2+(x, y)
≥ 1.

Let now r̄ ∈ R+. Then (y, s) ∈ ∂ d2
C(M)

Ff (x̄, r̄) if and only if, for every (x, r) ∈ X×R+, the following

inequality holds true

(4.2) r2(ef(x) − 1) ≥ r̄2(ef(x̄) − 1) + d2C (M) ((x̄, r̄), (y, s)))− d2C (M) ((x, r), (y, s))) .

Using the definition of dC (M), (4.2) is equivalent to

(4.3) r2ef(x) ≥ r̄2ef(x̄) − 2sr̄ cos+(d(x̄, y)) + 2sr cos+(d(x, y)).

Adding s2 cos2+(x, y)e
−f(x) + s2 cos2+(x̄, y)e

−f(x̄) to both sides of (4.3), the inequality becomes

ef(x)
(
r − s cos+(x, y)e

−f(x)
)2

− ef(x̄)
(
r̄ − s cos+(x̄, y)e

−f(x̄)
)2

+ s2 cos2+(x, y)e
−f(x)

(
cos2+(x̄, y)

cos2+(x, y)
ef(x)−f(x̄) − 1

)
≥ 0(4.4)

For Ff to be d2C (M)-convex, (4.4) must be satisfied for every (x, r) ∈ X × R+. When this is the

case, evaluating (4.4) at x = x̄ implies that, for every r ∈ R+,

(4.5)
(
r − s cos+(x̄, y)e

−f(x̄)
)2

−
(
r̄ − s cos+(x̄, y)e

−f(x̄)
)2

≥ 0.

For a given r̄ ∈ R+ (4.5) holds for every r ∈ R+ if and only if

s = r̄
ef(x̄)

cos+(x̄, y)
.

Thus, the (unique) value of s has been identified and we now evaluate (4.4) at this value. Inequality
(4.4) holds for every (x, r) ∈ X × R+ if and only if

(4.6) ef(x)
(
r − s cos+(x, y)e

−f(x)
)2

+ s2 cos2+(x, y)e
−f(x)

(
cos2+(x̄, y)

cos2+(x, y)
ef(x)−f(x̄) − 1

)
≥ 0.

If (4.6) holds true for every (x, r) ∈ X ×R+, then evaluating at r = s cos+(x, y)e
−f(x) we infer that

cos2+(x̄, y)

cos2+(x, y)
ef(x)−f(x̄) − 1 ≥ 0

must be satisfied for every x ∈ X, that is to say (4.1), i.e., y ∈ ∂cf(x̄).
The other direction is obvious since in Formula (4.6) the first term is a square and the second

term is nonnegative due to (4.1). The proof of (Ff )
d2

C(M) = Ffc is done similarly or can be seen as
a consequence of the identification of the subdiffentials. Remark that all the inequalities hold true
if f takes an infinite value. □

The next lemma makes a link between the notions of c-segment on M and d2C (M)-segment on

C (M). Let us recall the definition of cost-segments on a manifold.
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Definition 12. [47, Definition 12.10] Let c : M ×M → R be a cost, x̄ ∈ M , and consider the
parameterized segment between q0, q1 ∈ Tx̄M given by [0, 1] ∋ t 7→ qt = (1 − t)q0 + tq1. The
c-segment, whenever it is defined, is given by the parameterized curve

[0, 1] ∋ t 7→ yt := −(∇xc(x̄, ·))−1qt.

In this case, we refer to x̄ as the base point of the c-segment. Recalling that, by definition,
c-expx̄ (v) = y if and only if −∇xc(x̄, y) = v, c-segments coincide with the image under c-exponential
map of segments in the tangent space. In order to keep track of the endpoints and basepoint
in M , we introduce the notation t 7→ [y0, y1]

c
x̄(t) for the c-segment given by c-expx̄(qt), where

yi = c-expx̄(qi), i = 0, 1.

Lemma 20 (Link between cost-convex segment). Let t 7→ yt = [y0, y1]
c
x̄(t) = c-expx̄(qt) be a c-

segment on M , where qt = (1 − t)q0 + tq1 ∈ Tx̄M . Then, for every (r̄, a0) with r̄ ∈ R∗
+, a0 > −2r̄

there exist s0, s1 ∈ R+ such that the curve t 7→ (yt, st) ∈ C (M), with

(4.7) st =
2r̄ + a0

2 cos+(x̄, yt)
,

coincides with the d2C (M)-segment t 7→ [(y0, s0), (y1, s1)]
d2

C(M)

x̄,r̄ (t) = d2C (M)-exp(x̄,r̄)
(pt, at) where

pt =
(
r̄2 +

a0
2
r̄
)
qt, at ≡ a0.

Conversely, let t 7→ (yt, st) ∈ C (M) be the d2C (M)-segment

t 7→ [(y0, s0), (y1, s1)]
d2

C(M)

x̄,r̄ (t) = d2C (M)-exp(x̄,r̄) (pt, at) ,

where pt = (1 − t)p0 + tp1 ∈ Tx̄M and at ≡ a0 > −2r̄. Then t 7→ yt ∈ M is the c-segment of M
t 7→ [y0, y1]

c
x̄(t) = c-expx̄(qt) where qt =

2pt
2r̄2+r̄a0

.

Proof. Recall that c(x, y) = − log(cos2+(x, y)) and d2C (M)((x, r), (y, t)) = r2 + t2 − 2rt cos+(x, y).

Thus,

−∇xc(x̄, z) = ∂x[log(cos
2
+(x̄, z))] = 2

∂x[cos+(x̄, z)]

cos+(x̄, z)
,

−∇(x,r) d
2
C (M)((x̄, r̄), (z, s)) = 2 (r̄s∂x[cos+(x̄, z)],−r̄ + s cos+(x̄, z)) .

Therefore, a curve t 7→ yt ∈ M is the c-segment [y0, y1]
c
x̄(t) if and only if there exist q0, q1 ∈ Tx̄M

for which yt satisfies

(4.8) (1− t)q0 + tq1 = −∇xc(x̄, yt) = 2
∂x[cos+(x̄, yt)]

cos+(x̄, yt)
,

where yi = c-expx̄(qi), i = 0, 1 (for simplicity set qt = (1−t)q0+tq1). Similarly, a curve t 7→ (yt, st) ∈
C (M) is a d2C (M)-segment if and only if there exist a0, a1 > 0 and p0, p1 ∈ Tx̄M for which (yt, st)

satisfies

(4.9)

{
−∂x d2C (M)((x̄, r̄), (yt, st)) = 2r̄st∂x[cos+(x̄, yt)] = (1− t)p0 + tp1

−∂r d2C (M)((x̄, r̄), (yt, st)) = −2r̄ + 2st cos+(x̄, yt) = (1− t)a0 + ta1 .

Let t 7→ yt = [y0, y1]
c
x̄(t) = c-expx̄(qt), with qt = (1− t)q0 + tq1 ∈ Tx̄M . For simplicity, we look for

solutions of (4.9) where a0 = a1. If t 7→ cos+(x̄, yt) does not vanish, the second equation gives

st =
a0 + 2r̄

2 cos+(x̄, yt)
,

which is strictly positive if a0 > −2r̄. Plugging such choice of st in the first equation of system (4.9),
we look for p0, p1 ∈ Tx̄M satisfying

r̄
a0 + 2r̄

cos+(x̄, yt)
∂x[cos+(x̄, yt)] = (1− t)p0 + tp1.
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Using (4.8), the identity above reads

r̄

2
(a0 + 2r̄)qt = (1− t)p0 + tp1,

which is satisfied by the choice pi =
r̄
2 (a0 + 2r̄)qi, i = 0, 1.

Conversely, assume a d2C (M)-segment is given by

t 7→ (yt, st) = [(y0, s0), (y1, s1)]
d2

C(M)

(x̄,r̄) (t) = d2C (M)-exp(x̄,r̄) (pt, a0) ,

where pt = (1− t)p0 + tp1 and a0 > −2r̄. Then the pair (yt, st) satisfies (4.9). Define qt =
2pt

a0r̄+2r̄2 .

Since t 7→ pt is affine, so is t 7→ qt. Moreover by (4.9), qt satisfies

qt = ∂x[log(cos
2
+(d(x̄, yt)))] = −∇xc(x̄, yt).

Therefore t 7→ yt is a c-segment between endpoints y0, y1 and with base point x̄. □

A direct consequence of the correspondence between c-segments and d2C (M)-segments is the fol-

lowing.

Corollary 21 (Link between cost convexity domains). Let Y × R>0 ⊂ C (M) be a d2C (M)-convex

set with respect to (x̄, r̄) ∈ C (M). Then Y ⊂M is a c-convex set with respect to x̄ ∈M .

Proof. By definition see [47, Definition 12.11], Y × R+ ⊂ C (M) is d2C (M)-convex set with respect

to (x̄, r̄) if every pair of points in Y ×R+ can be joined by a d2C (M)-segment with base point (x̄, r̄).

Take y0, y1 ∈ Y such that there exists q0, q1 ∈ Tx̄M with the property yi = c-expx̄(qi), i = 0, 1. Let
a0 > −2r̄ and define

pi =
(
r̄2 +

a0
2
r̄
)
qi, i = 0, 1,

si =
2r̄ + a0

2 cos+(x̄, yi)
, i = 0, 1.

By construction, the d2C (M)-segment

t 7→ (yt, st) := d2C (M)-exp(x̄,r̄)((1− t)p0 + tp1, a0)

is contained in Y ×R+ and has endpoints (y0, s0), (y1, s1). By Lemma 20, the curve t 7→ yt coincides
with the c-segment c-expx̄(qt), where qt = (1− t)q0 + tq1. □

Assume t 7→ yt = [y0, y1]
c
x̄(t) ∈ M is a c-segment. The support function along yt is defined by

hx : [0, 1] → R
hx(t) = c(x̄, yt)− c(x, yt) .

A synthetic formulation for the sign of the MTW tensor is also given by the quasi or plain convexity
of the support function along a cost-segment see for instance [19, Section 1.5.b,c,d] for a summary of
what was developed in [47, Theorem 12.36, Proposition 12.15(i)] and [27, Theorem 2.7]. The second
crucial lemma of this section makes the link between support function along a c-segment and the
support function along the lifted d2C (M)-segment on C (M).

Lemma 22. Assume t 7→ yt = [y0, y1]
c
x̄(t) ∈M is a c-segment with support function t 7→ hx(t). Let

t 7→ (yt, st) = [(y0, s0), (y1, s1)]
d2

C(M)

(x̄,r̄) (t) be any d2C (M)-segment associated to [y0, y1]
c
x̄(t) throughout

Lemma 20 and denote by H(x,r) : [0, 1] → R the corresponding support function, namely

H(x,r)(t) = d2C (M)((x̄, r̄), (yt, st)− d2C (M)((x, r), (yt, st)).

Then hx and H(x,r) satisfy the following identity

hx(t) = 2 log

(
H(x,r)(t)− r̄2 + r2

a0r̄ + 2r̄2
+ 1

)
.

Remark that for hx, H(x,r) to be well defined the cost c must satisfy some smoothness condition
ensuring that qt is in the domain of definition of c-exp.
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Proof. By definition

hx(t) = c(x̄, yt)− c(x, yt) = − log(cos2+(x̄, yt)) + log(cos2+(x, yt))

= 2 log

(
cos+(x, yt)

cos+(x̄, yt)

)
.(4.10)

The support function on C (M) is given by

H(x,r)(t) = d2C (M)((x̄, r̄), (yt, st))− d2C (M)((x, r), (yt, st))

= r̄2 − r2 + 2rst cos+(x, yt)− 2r̄st cos+(x̄, yt).

Since (yt, st) is a d2C (M)-segment, thanks to Lemma 20, it satisfies (4.7), whence

2r̄st =
a0r̄ + 2r̄2

cos+(x̄, yt)
=

ā

cos+(x̄, yt)
,

where ā = a0r̄ + 2r̄2 > 0. Thus

H(x,r)(t)− r̄2 + r2 = ā

(
r cos+(d(x, yt))

r̄ cos+(d(x̄, yt))
− 1

)
.

Finally

log
(
H(x,r)(t)− r̄2 + r2 + ā

)
− log ā = log

(
r cos+(d(x, yt))

r̄ cos+(d(x̄, yt))

)
,

which provides the statement thanks to (4.10). □

Thanks to Lemma 20 and Lemma 22 we provide an instance of an answer to the question raised
in [26, Example 3.9], which states

“It remains interesting to find more general sufficient conditions on a Riemannian
manifold (M, g) and function f ”...” for f(d(x, y)) to be strictly or weakly regular.”

We prove hereafter the following sufficient condition: if the MTW tensor associated with d2C (M)

satisfies the MTW weak condition on C , then so does the MTW tensor associated with c(x, y) =
− log(cos2+(d(x, y))) on M . Recall that the latter cost is associated with the Wasserstein-Fisher-Rao
metric, see Corollary 8. It is worth mentioning that the argument we exhibit works for any cost
j(x, y) on the base manifold as long as ∇xj(x, ·) is injective and continuous with inverse continuous
on a small neighborhood of all y0 ∈M .

We have two proofs of this result based on two different characterizations of MTW weak condition,
one using quasi-convexity of c-segments and the other one based on the so-called assumption (C).

Definition 13. [47, p.288] A cost c onM×M satisfies Assumption (C) if for every c-convex function
f and for every x ∈M in its domain, the c-subdifferential ∂cf(x) is connected.

Lemma 23. If d2C (M) satisfies assumption (C) on C (M) then c satisfies assumption (C) on M .

Proof. To prove assumption (C) for c, let f : M → R be a c-convex function. (Note that both
on M and on C (M) connectedness is equivalent to path-connectedness.) Take y1, y2 ∈ ∂cf(x̄).

Then, by Lemma 19, (yi, si) ∈ ∂ d2
C(M)

Ff (x̄, r̄), where si =
r̄ef(x̄)

cos+(x̄,yi)
. By assumption (C) on d2C (M),

∂ d2
C(M)

Ff (x̄, r̄) is connected, hence there exists a continuous path t 7→ (yt, st) ∈ ∂ d2
C(M)

Ff (x̄, r̄),

with endpoints (y0, s0), (y1, s1). Again, by Lemma 19, (yt, st) ∈ ∂ d2
C(M)

Ff (x̄, r̄) if and only if

yt ∈ ∂cf(x̄), st =
r̄ef(x̄)

cos+(x̄, yt)
.

In particular, t 7→ yt is a continuous path in ∂cf(x̄) between endpoints y0, y1, whence ∂cf(x̄) is
connected. □

We are in a position to provide the main theorem of this section. Recall that a cost c satisfies
the MTW weak condition if and only if, for every pair of points, the MTW tensor associated with
c computed at any pair of c-orthogonal vectors is nonnegative (see also Section 2.3).
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Theorem 24. If d2C (M) on C (M) satisfies the MTW weak condition, then the cost c on M satisfies

the MTW weak condition.

We give two proofs of Theorem 24.

Proof 1. Recall that, under some convexity assumptions, [47, Theorem 12.42] states that assumption
(C) is equivalent to MTW weak condition. Both costs d2C (M) on C (M) and c on M satisfy the

requirements in [47, Theorem 12.42]. Therefore, applying the result to d2C (M) we deduce that

d2C (M) satisfies assumption (C). By Lemma 23 also c satisfies assumption (C) on M . Applying [47,

Theorem 12.42] to c we conclude that c satisfies MTW weak condition. □

Proof 2. By the results [47, Proposition 12.15 (i), Theorem 12.42], under the same convexity as-
sumptions, MTW weak condition for a cost is equivalent to the quasi-convexity of the support
function along any cost-segment (see also [27, Theorem 2.7] where this remark was made for the
first time and [19, Section 1.5.b,c,d] for a summary). Assume d2C (M) satisfies MTW weak con-

dition on C (M). Then, for every d2C (M)-segment t 7→ (yt, st), the support function H(x,r)(t) =

d2C (M)((x̄, r̄), (yt, st))− d2C (M)((x, r), (yt, st)) is quasi-convex, i.e.,

H(x,r)(t) ≤ max
(
H(x,r)(0), H(x,r)(1)

)
.

Let t 7→ yt ∈M be a c-segment, x ∈M . By Lemma 20, yt is the projection onM of a d2C (M)-segment

t 7→ (yt, st). Moreover, by Lemma 22, the support function t 7→ hx(t) along yt and t 7→ H(x,r)(t) are
related by

hx(t) = 2 log

(
H(x,r)(t)− r̄2 + r2

a0r̄ + 2r̄2
+ 1

)
.

By hypothesis,H(x,r)(t) is quasi-convex. Since log is an increasing function, max
(
H(x,r)(0), H(x,r)(1)

)
=

H(x,r)(j) is equivalent to max (hx(0), hx(1)) = hx(j). Since a0r̄ + 2r̄2 > 0, quasi-convexity of
t 7→ H(x,r)(t) implies quasi-convexity of t 7→ hx(t). We apply [47, Proposition 12.15 (i), Theorem
12.42] to the cost c and we conclude that c satisfies MTW weak condition. □

Note that the argument to prove Theorem 24 uses a synthetic strategy as illustrated in [47,
Chapter 26], whereas the assumption is formulated in such a way that it could be tested via direct
computations. Nevertheless, we tried unsuccessfully to implement a proof based only on symbolic
computations.

Remark 9. In order to mention some weaker results, it is useful to review this section, keeping
[47, Theorem 12.42] in mind. Lemma 22 states an equivalence for c to be regular on M and for
d2C (M) to be regular on a specific set of d2C (M)-segments of C (M). Whereas Lemma 19 states an

equivalence for c to satisfy assumption (C) on M and d2C (M) to satisfy assumption (C) on a specific

class of d2C (M)-convex functions of C (M). Both these conditions imply the weak MTW condition.

Therefore assumption (C) or regularity for d2C (M) on a subdomain on these specific sets is enough

to ensure that MTW weak condition for c holds true on a subdomain on the base space. To prove
Theorem 24 we also used the reverse results that assumption (C) or regularity for d2C (M) on a totally

d2C (M)-convex set D are implied by MTW weak condition for d2C (M).

We end this section by applying the strategy used to obtain Theorem 24 to derive a result on
the cross-curvature tensor. Cross-curvature tensor is essentially the curvature tensor of the Kim-
McCann metric without the orthogonality condition, see [27]. It is also referred to asMTW (0, 0) [19,
Section 1.5.b,c,d]. Thus, asking nonnegativity of the cross-curvature tensor is a stronger condition
than asking for the MTW weak condition to hold true. Nevertheless, this condition enjoys a useful
property, namely it is known to pass to Riemannian submersions and products of manifolds (as
proved in [27]), i.e., nonnegativity of cross-curvature tensor is preserved, which may not be the case
for the nonnegativity of the MTW tensor.
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Theorem 25. If the cross-curvature tensor for d2C (M) on C (M) is nonpositive, then so is the

cross-curvature tensor for the cost − log(cos2+(d(x, y))) on M .

Proof. A synthetic formulation for the sign of the cross-curvature tensor associated with a cost c is
given by the convexity/concavity of the support function along a c-segment [19, Section 1.5.b,c,d]
or [27, Theorem 2.10], namely: convexity of support functions is equivalent to nonnegative cross-
curvature tensor whereas concavity is equivalent to a nonpositive cross-curvature tensor. Using
Lemma 22 and the fact that log is a concave increasing function we get that t 7→ H(x,r)(t) concave
implies t 7→ hx(t) is also concave. □

This result is not of direct interest for smoothness of unbalanced optimal transport since it requires
nonnegativity of the cross-curvature tensor rather than nonpositivity.

As log is concave we cannot prove here a result similar to Theorem 24, that would push the
nonnegativity of cross-curvature tensor from the cone onto the base space.

5. Summary and future directions

We have shown, not unsurprisingly, that regularity for unbalanced optimal transport can be
reduced to the one of optimal transport through the linearization of the dual problem. Regularity,
being a structural result in itself, is interesting outside analysis. For instance, regularity of optimal
transport maps is key to mitigate the curse of dimension of statistical optimal transport as done in
[45] and to obtain minimax rate of convergence for the statistical estimation of optimal potentials
[37]. Our results should allow similar gains in the statistical estimation of unbalanced optimal
transport. We focus on Wasserstein-Fisher-Rao metric since it is the natural length space associated
with the problem. This particular case leads us to examine the MTW condition of the induced cost.

Furthermore, an open application of pur polar factorization can lead to new numerical scheme
for the Camassa-Holm equation as done for incompressible Euler in [20].

Finally, we provide an example of answer to a question (formulated in [26]) by showing that weak
MTW condition on the cone implies weak MTW condition on the base manifold. A surprisingly
different result holds for cross-curvature, whose nonpositivity on the cone implies nonpositivity of
the corresponding cost on the manifold.
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[10] Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. Scaling algorithms for unbal-

anced transport problems. Mathematics of Computation, 2018.

[11] G. De Philippis and A. Figalli. The Monge-Ampère equation and its link to optimal transportation. Bull. Amer.
Math. Soc., 51:527–580, 2014.

[12] Guido De Philippis and Alessio Figalli. The Monge–Ampère equation and its link to optimal transportation.
Bulletin of the American Mathematical Society, 51(4):527–580, 2014.

[13] Guido De Philippis and Alessio Figalli. The Monge-Ampère equation and its link to optimal transportation. Bull.

Amer. Math. Soc. (N.S.), 51(4):527–580, 2014.
[14] Guido De Philippis and Alessio Figalli. Partial regularity for optimal transport maps. Publications Mathématiques
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[43] Thibault Séjourné, Jean Feydy, François-Xavier Vialard, Alain Trouvé, and Gabriel Peyré. Sinkhorn divergences
for unbalanced optimal transport, arXiv 1910.12958, 2019.
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