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ABSTRACT
Whether to retrieve, answer, translate, or reason, multimodality
opens up new challenges and perspectives. In this context, we are
interested in answering questions about named entities grounded
in a visual context using a Knowledge Base (KB). To benchmark this
task, called KVQAE (Knowledge-based Visual Question Answering
about named Entities), we provide ViQuAE, a dataset of 3.7K ques-
tions paired with images. This is the first KVQAE dataset to cover a
wide range of entity types (e.g. persons, landmarks, and products).
The dataset is annotated using a semi-automatic method. We also
propose a KB composed of 1.5M Wikipedia articles paired with
images. To set a baseline on the benchmark, we address KVQAE as
a two-stage problem: Information Retrieval and Reading Compre-
hension, with both zero- and few-shot learning methods. The exper-
iments empirically demonstrate the difficulty of the task, especially
when questions are not about persons. This work paves the way for
better multimodal entity representations and question answering.
The dataset, KB, code, and semi-automatic annotation pipeline are
freely available at https://github.com/PaulLerner/ViQuAE.

CCS CONCEPTS
• Information systems → Question answering; Test collec-
tions;Multimedia and multimodal retrieval.
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Query (input) Relevant item in the Knowledge Base

“Which constituency
did this man represent
when he was Prime
Minister?”

“Macmillan indeed lost Stockton in the land-
slide Labour victory of 1945, but returned to
Parliament in the November 1945 by-election
in Bromley.”

“In which year did this
ocean liner make her
maiden voyage?”

“Queen Elizabeth 2, often referred to simply as
QE2, is a floating hotel and retired ocean liner
built for the Cunard Line which was operated
by Cunard as both a transatlantic liner and a
cruise ship from 1969 to 2008.”

Figure 1: Example of questions in the ViQuAE dataset along
with their grounding image and answer source (part of the
Knowledge Base).

Entities. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’22), July 11–15,
2022, Madrid, Spain. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3477495.3531753

1 INTRODUCTION
Fusing multiple modalities, such as image and text, to retrieve rel-
evant information is a long-standing problem that is nontrivial
because these modalities carry semantics at different levels [46].
This is particularly true in the case of Knowledge-based Visual Ques-
tion Answering about named Entities (KVQAE), the task considered
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in this article, where different types of relations can stand between
a question and its grounding image. In Visual Question Answering
(VQA), the content of the contextual image, such as the color of an
object or the number of objects, is the target of the question [2].
On the other hand, Knowledge-based VQA [30, 33, 49, 50] uses the
image as a context to ask questions grounded in Knowledge Bases
(KBs). However, both lines of work mostly target coarse-grained
object categories, resulting in a reliance on an object detection pre-
processing step (see for instance [1, 18]). For example, in Figure 1,
one could ask about the kind of boat: “Is this a fishing boat?” Instead,
our work is focused on questions that require knowledge about
named entities, such as the boat Queen Elizabeth 2. We release the
ViQuAE dataset for this purpose1. Our dataset was designed as a
benchmark to track the progress of KVQAE systems. Indeed, we
argue that KVQAE is a clear, well-defined task that can be evalu-
ated easily, making it suitable to track the progress of multimodal
entity representation’s quality. Multimodal entity representation is
a central issue that will allow to make human-machine interactions
more natural. For example, while watching a movie, one might
wonder “Where did I already see this actress?” or “Did she ever win
an Oscar?”

Questions about named entities are highly challenging since cur-
rent KBs contain millions of them. Therefore, using each modality
independently is insufficient to retrieve relevant information with
respect to users’ needs. For example, in the images of Figure 1, it is
fairly complex to recognize Harold Macmillan out of a KB of mil-
lions of persons. However, one can infer from the question that he
was prime minister, filtering down the candidates to a few hundred.

Shah et al. [43] have previously worked on KVQAE but were
limited to person-named entities. Instead, ViQuAE covers a wide
range of entity types. This diversity is a central issue in KVQAE,
notably because of the resulting heterogeneity in visual represen-
tations. Figure 2 displays a few examples of entity types targeted
in our work. Obviously, smartphones and mountains do not look
quite alike, but, additionally, it is worth noticing the great diversity
among the same entity type or even the same entity. For example,
the first row shows two ways of depicting a person (here Louis
Philippe I), namely through a photograph or a painting. The het-
erogeneity is even greater in some sense for organizations that can
be depicted through a building (e.g. headquarters), a known man-
ufactured product they sell, or simply their logo. This requires a
multimodal knowledge representation, which clearly distinguishes
KVQAE from image retrieval. It also illustrates the need to study
other entities than persons, which can be recognized from their face.
Additionally, it is worth pointing out that the very same picture
can be used to ask questions about different entities: for example,
Figure 2b could be used to ask about Louis Philippe I, but also about
the painter or even the painting itself (e.g. “Who painted it?” or
“Where can I see it?”).

As demonstrated in the next section, there are numerous tasks
that mix text and image, and one cannot expect to build datasets of
100K+ samples for each. Zero- and few-shot learning underwent
several breakthroughs in various fields of academic research, un-
der the prism of Foundation Models [4]: e.g. GPT-3 [5] in Natural
Language Processing; CLIP [37] in Computer Vision; DALL-E [39]

1Available at https://github.com/PaulLerner/ViQuAE.

(a) Person (Louis Philippe I) (b) Person (Louis Philippe I) or
painting (by Franz Xaver

Winterhalter)

(c) Artificial Landmark (Eiffel
Tower)

(d) Natural Landmark (Mount
St. Helens)

(e) Organization (Apple Inc.)
or building (Apple Fifth

Avenue)

(f) Organization (Apple Inc.)
or product (iPhone 1)

Figure 2: Some depictions of different entity types and dif-
ferent depictions of the same entity type considered in our
work.

in Text-to-Image Generation. With only 3.7K samples, ViQuAE is
too small to train huge neural networks from scratch. Instead, we
expect it to foster research towards transferable model architec-
tures and zero- or few-shot learning techniques, which are essential
to any KVQAE system. Note that by “zero-shot”, we refer to mod-
els that are not fine-tuned using ViQuAE’s training set. They are
sometimes referred to as “off-the-shelf” models in the Information
Retrieval (IR) literature.

Our main contributions are as follows: (i) we provide a new
dataset for KVQAE, the first to cover a wide range of entity types,
along with an extensible pipeline for semi-automatic annotation;
(ii) we redistribute a multimodal KB of 1.5M entities based on
Wikipedia; (iii) we propose and open-source strong baselines for
both zero- and few-shot methods to address KVQAE, being the first
to treat the task on diverse entity types and using a text-based KB.

2 RELATEDWORK
Since our approach to KVQAE relies on a text-based KB, it is
strongly linked to text Question Answering (QA). Text QA gained
popularity with the TREC QA evaluations [48]. It has largely been
addressed as a two-stage problem, with an IR stage followed by
a Reading Comprehension (RC) stage, and a global focus on fac-
toid questions (e.g. [7]). Our work is no exception. In the last few

https://github.com/PaulLerner/ViQuAE


Table 1: Summary of common points and differences be-
tween KVQAE and related tasks. All share two modalities:
vision and language. Named entities are often opposed to
coarse-grained object categories. *Unclear.

Task Question
Answering

Common-
sense

Information
Retrieval

Named
Entities

KVQAE [43] ✔ ✘ ✔ ✔

Multimodal
IR [46] ✘ ✘ ✔ ✔

Cross-modal
VQA [40] ✔ ✘ ✘ ∗

Knowledge-
based VQA
[33]

✔ ✔ ✔ ✘

VQA [2] ✔ ∗ ✘ ✘

years, increased attention has been paid to RC, spawning ever-
larger datasets [22, 27, 38, 53]. We take advantage of the latter to
build our own dataset, as explained in the next section.

While initially focused on text, IR was rapidly extended to mul-
timodal documents. Srihari et al. [46] and Clough et al. [9] for
instance already shared a number of issues with KVQAE, such as
multimodal information fusion. However, modalities in multimodal
IR are often redundant, while they are complementary in KVQAE.

On the contrary, cross-modal QA [6, 24, 40, 42, 47] can be seen
as RC across multiple modalities (e.g. text, tables, images...). The
answer source, whatever the modality, is provided along with the
contextual question and both are interdependent. For example,
Reddy et al. [40] build their corpus upon news articles, where the
system has access to image metadata, such as its caption. Hence,
the task is more about logical reasoning than IR, unlike KVQAE,
which is factoid.

Knowledge-based VQA [30, 33, 49, 50] focuses on commonsense
questions about coarse-grained object categories. Furthermore,
(Knowledge-based) VQA datasets are based on the images of the
Common Objects in Context (COCO) dataset [31]. For these two
reasons, Knowledge-based VQA has largely been addressed with
an object detection preprocessing step, the object detector being
trained on the images of COCO, which facilitates IR (e.g. [18]). Com-
mon points and differences between KVQAE and related tasks are
summarized in Table 1.

Shah et al. [43] introduce the first KVQAE dataset: KVQA, based
on Wikidata and restricted to person entities. An important differ-
ence with our work is their use of a KB based on a knowledge graph
instead of unstructured text. Despite its large size, their dataset has
several limitations: (i) it is restricted to person entities and in this
case, person recognition boils down to face recognition; (ii) ques-
tions are automatically generated from templates and Wikidata
schema. Thus, they are quite repetitive and limited by the schema:
most questions are about the person’s identity, place of birth, date

Figure 3: Overview of the automatic annotation pipeline.
Note that not only the entity mention (“Deborah
Cavendish”) but also its syntactic children (“Dowager
Duchess of Devonshire”) are replaced by the ambiguous
mention.

of birth, or job. Instead, we aim at building a dataset covering vari-
ous entity types with a rich language and questions spanning over
many topics.

3 THE VIQUAE DATASET
3.1 Automatic annotation
We build upon existing QA datasets, which provide a wide range of
questions spanning over various topics and entities. Additionally,
this limits manual annotation efforts. The main idea of the process
is to replace the entity mention in the question with a depiction
of the entity (see Figure 3). The entity is then referenced by an
ambiguous mention (e.g. “she” ). In this way, one cannot answer the
question without relying on the grounding image.

To implement this process, we first need to recognize and disam-
biguate named entities in the question. We must also find relevant



depictions of the entities. Finally, entities need to be referenced by
an ambiguous mention. Referring expression generation has been
extensively studied [26], but our approach is quite different since
we are looking for images that depict a single entity. In this case,
the referring expression does not need to include any distinctive
property of the entity, which can be simply referred to by a pronoun
or hypernym [10].

To address these challenges, we use Wikipedia2, Wikidata3, and
Wikimedia Commons4, where entities are uniquely identified.

Among the various QA datasets mentioned in the previous sec-
tion, we decided to use TriviaQA because of its large scale and
question typology [22]. More precisely, we use the KILT version
of TriviaQA [35]. KILT is a benchmark for knowledge-intensive
Natural Language Processing tasks, such as QA and Entity Linking.
Our automatic annotation pipeline could be applied effortlessly to
other QA datasets in KILT.

3.2 Application on TriviaQA
First, dependency parsing and named entity recognition are applied
using spaCy5, yielding around 0.9 valid mentions per question.
Dependency parsing enables to keep only some entity mentions,
e.g. the subject of the question. These entity mentions are then
matched with the entities disambiguated by Joshi et al. [22], who
used TAGME [15]. Note that this entity disambiguation was very
precise because candidate entities were discarded if their Wikipedia
page did not contain the answer to the question.

Wikidata allows to gather information about the disambiguated
entities: their type, occupation, gender, and Wikimedia Commons
category. The latter is used to find a relevant depiction, while the
others are needed to generate an ambiguous mention. Humans
are mentioned by their occupation (e.g. “this writer”) and other
entities by their type (e.g. “this tourist attraction”). Furthermore,
if the gender is available, we also use “this man/woman” and “he-
him-his/she-her-hers” according to the syntactic dependency of the
original mention.

Because some abstract entities such as countries or nationalities
are often mentioned in questions but are not relevant for KVQAE,
the entity type is restricted to be part, or a subclass, of a hand-
crafted list of types, available along with the dataset. Moreover, to
comply with GDPR [14], and since the number of questions about
humans is quite large, only questions about deceased persons are
kept. This step discards another 31% of questions.

To find relevant depictions of the entity in its Commons category,
several heuristics are designed to sort the images: first, the image
should be tagged as depicting the entity in Commons structured
data; then, the entity label should be included in: (i) the image’s
title; (ii) the image’s description; (iii) all of the image’s Commons
categories. If several images are available, a unique one is used for
each question about a given entity. Of course, the reference image
of the entity (see Section 5) is excluded. Thanks to the Wikimedia
Commons contributors, all images of the dataset are either freely
licensed6 or in the public domain, allowing us to redistribute them

2https://www.wikipedia.org/
3https://www.wikidata.org/
4https://commons.wikimedia.org/
5https://spacy.io/
6https://freedomdefined.org/Definition

to ensure reproducibility. Around 3% of questions lacked available
images and were discarded.

We describe how to refine the automatic pipeline in the next
section.

3.3 Manual refinement
The automatic annotation described above has some caveats. Two
major sources of errors are the selected image, which might be
irrelevant, and the specificity of the question: e.g. “Bonar Law is
the only Prime Minister not born in the UK. In which country was
he born?” is processed into “He is the only Prime Minister not born
in the UK. In which country was he born?” which can be answered
without looking at the image. To tackle this, an annotation interface
has been designed using Label Studio7. The annotator is allowed
to rephrase the question freely (some alternative mentions are
suggested) as long as it does not change the answer. They should
also choose among eight candidate images if the selected one is
not appropriate (based on the reference image of the entity; see
Section 5). As a last resort, the annotatormay also plainly discard the
question. A screenshot of the interface is available in Appendix C,
and annotators’ instructions are part of our codebase.

Given the subtleties of the annotation process and the staggering
reports of Marino et al. [33] who had to discard 73K out of 87K
questions in their dataset, we decided to rely on seven in-house an-
notators (the authors of the paper). Once familiar with the interface,
the annotators were able to process ≈ 120 questions per hour. The
proportion of questions about humans was balanced to ensure the
diversity of the dataset. We annotated 5.7K generated questions, i.e.
spent around 48 hours of manual annotation in total. Among those
5.7K questions, 2K were discarded, mostly because they were over-
specified or lacked a relevant image. Hence, the ViQuAE dataset
consists of 3.7K questions, randomly split in training, validation,
and test equally-sized sets such that images do not overlap. The
majority (55%) of the valid questions were edited by the annotators.
Edited questions had an average Levenshtein distance of 5 words
from their generated question.

To measure inter-annotator agreement, a subset of 103 questions
was annotated by at least 3 different annotators. The agreement on
whether to discard the question was computed with Fleiss’ Kappa
[17]. The annotators showed a fair agreement, with^ = 0.33. Indeed,
whether a question is over-specified or not can be quite subjective.
Moreover, some over-specified questions’ reformulation can be
subtle and not obvious to all annotators. However, one should bear
in mind that, in our case, inter-annotator disagreement does not
concern answering the question but only filtering the automatically
generated dataset, as both questions and answers are defined in
TriviaQA and the annotator cannot change the answer.

We analyze the resulting dataset in the following section.

4 DATA ANALYSIS
The ViQuAE dataset consists of 3.7K questions grounded in 3.3K
unique images. Two examples are shown in Figure 1. Questions
are 12.4 words long on average, with a vocabulary of 4.7K words.
In contrast, left-out questions of TriviaQA are 16.4 words long on
average. There are close to no answer priors; among 3.7K answers,
7https://labelstud.io/

https://commons.wikimedia.org/wiki/Commons:Structured_data
https://commons.wikimedia.org/wiki/Commons:Structured_data
https://www.wikipedia.org/
https://www.wikidata.org/
https://commons.wikimedia.org/
https://spacy.io/
https://freedomdefined.org/Definition
https://labelstud.io/


Table 2: Dataset statistics compared to KVQA [43].

ViQuAE KVQA
# Questions 3.7K 183K
# Questions per image 1.1 7.4
Vocabulary 4.7K 0.6K8

Average q. length 12.4 10.1
Answer prior 0.3% 15.9%
Answer overlap 25.3% 89.4%
Entity overlap 18.1% 40.6%
# Questions per entity 1.5 9.7
# Entity types 980 1

the most common, “France” and “Turkey”, only occur 13 times, that
is 0.3%. Moreover, there is only a 25% answer overlap between
the train and test sets, which is very low compared to the reports
of Lewis et al. [28], who found 72% answer overlap between the
train and test sets of TriviaQA, among other datasets. Because
nearly all images in our dataset are unique, and there is no overlap
between the subsets’ images, there is only an 18% overlap between
the entities in the test and train sets. Those three points further
highlight the difference between KVQAE and (Knowledge-based)
VQA and demonstrate that treating KVQAE as a classification task
would be inefficient.

A significant contribution of the dataset is its entity diversity. As
discussed in Section 1, it is one of the key challenges for multimodal
representations. ViQuAE comprises nearly a thousand different
entity types (in the Wikidata ontology; as defined by the property
P31 of the entities) among its 2.4K unique entities. Note, however,
that those types are not exclusive: each entity has 1.6 types on
average. There are 43% humans in the dataset, but other entities
are human-like, such as fictional or mythological characters, or
groups of humans, e.g. a music band. A bubble chart of the top-100
most frequent entity types is shown in Figure 4. A summary of the
statistics compared with the KVQA dataset of Shah et al. [43] is
reported in Table 2. We can see that, despite its small size, ViQuAE
is more diverse in several aspects.

The ViQuAE dataset also has some limitations. A downside of
our annotation process, more precisely the named entity disam-
biguation, is that answers are guaranteed to be in the Wikipedia
page of the entity, i.e. the questions are one-hop at the document
level. However, the question might require reasoning over multiple
sentences or paragraphs in the document. In contrast, Shah et al.
[43] include several multi-hop questions that, while they might not
sound very natural, efficiently probe the reasoning capacities of the
model.

In the following section, we describe the Knowledge Base (KB)
used to answer the questions of ViQuAE.

5 THE VIQUAE KNOWLEDGE BASE
The KB is built upon Wikipedia, more precisely, the 2019/08/01
dump available in KILT [35], which consists of 5.9M articles. Each
one is mapped to a Wikidata entity. Hence, we use both terms
interchangeably. To get a visual representation of the entity, a
8Averaged over 49 random subsets of the same size as ViQuAE, the vocabulary over
the whole KVQA dataset consists of 8.4K tokens.

Figure 4: Bubble chart of the top-100 most frequent, non-
exclusive, entity types in the dataset.

single image is retrieved from Wikidata, in the following order of
preference of its image properties: (i) P18 “image” (it is roughly
equivalent to the infobox image in Wikipedia articles); (ii) P154
“logo image”; (iii) P41 “flag image”; (iv) P94 “coat of arms image”;
(v) P2425 “service ribbon image”. Articles without any image are
discarded, leaving us with a KB of 1.5M articles – including 542K
humans – each paired with an image. This is more than two orders
of magnitude greater than the “open-world” experiments of Shah
et al. [43]. 95% of the images in the KB are unique.

In the next section, we describe how to index this KB to address
KVQAE along with the rest of our baseline.

6 EXPERIMENTAL SETTINGS
We divide the KVQAE problem into two steps: Information Re-
trieval and Reading Comprehension, with dedicated evaluation
metrics for each. We emphasize on IR as we argue that it is the
most challenging step. Following Joshi et al. [22] and Petroni et al.
[35], Wikipedia aliases of a given answer are considered valid an-
swers. Final evaluation is always carried out on the test set of 1,257
questions, while hyperparameters were tuned on the validation set
of 1,250 questions and, for few-shot baselines, models were trained
on the training set of 1,190 questions. Additional details are given
in Appendix B and all the experiments can be reproduced using
our codebase9.

7 INFORMATION RETRIEVAL
IR aims at retrieving relevant sources of knowledge from the KB
with respect to the query (question and image).

9https://github.com/PaulLerner/ViQuAE
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7.1 Methods
We follow a late fusion approach: search is done independently
with the question and the image. Results are then fused at the score
level. Our implementation is based on Elasticsearch10 and Faiss
[21] for sparse and dense retrieval respectively, both via Hugging
Face’s datasets library [29].

7.1.1 Text Retrieval. Following Wang et al. [51] and Karpukhin
et al. [23], articles are stripped of their semi-structured data, such
as tables and lists. Each article is then split into disjoint passages of
100 words for text retrieval while preserving sentence boundaries,
which leads to 12M passages (≈ 8 passages per article). The title
of the article is appended to the beginning of each passage. As a
zero-shot baseline, we use BM25 [41] and optimize its hyperparam-
eters on the validation set using grid search. To also set a few-shot
baseline, we rely on DPR [23]. DPR is a neural retrieval model built
upon two BERT [13] models: one for the question and one for the
passage. DPR is trained to minimize the cross-entropy of the sim-
ilarities between questions and passages (with a single relevant
passage per question). Crucially, hard negatives are mined using
BM25. Because of the small size of ViQuAE, the model is first pre-
trained on TriviaQA, filtered out of all questions used in ViQuAE,
even those that were discarded. We also consider the model only
trained on TriviaQA as another zero-shot baseline11. The validation
is done on the TriviaQA questions used to generate the ViQuAE
validation set. For training, the hyperparameters are set as in [23].

7.1.2 Image Retrieval. For image retrieval, two different represen-
tations are used in an exclusive manner. ArcFace [12] for faces, if
at least one is detected, and, if not, ImageNet-ResNet [20] and CLIP
[37] for the full image. Therefore, the KB is split into two parts:
humans with a detected face and non-humans, as we (naively) as-
sume that faces are only relevant for human entities. Following
Deng et al. [12], we use MTCNN [54] for face detection. The 5 face
landmarks (two eyes, nose, and two mouth corners) are adopted to
perform similarity transformations so that they are always at the
same position in the image, regardless of the original pose of the
person. If several faces are detected, only the one associated with
the highest probability is kept. 6.6% of the humans in the KB lacked
a detected face and were hence discarded.

ArcFace is a state-of-the-art representation learning method for
face recognition and verification. We use the model pre-trained on
MS-Celeb [19], consisting of celebrities’ pictures. Its entities have
some overlap with ViQuAE, which is analyzed in the next section.

ResNet is a milestone in the history of deep neural networks as
its “skip-connections” allow it to train hundred layer deep Convo-
lutional Neural Networks (CNNs). It is widely used as a backbone
in representation learning, e.g. in ArcFace. We denote “ImageNet-
ResNet” the model trained on ImageNet [11], the most popular
pre-training dataset for image classification over 1,000 object cate-
gories. Indeed, the features extracted from the last convolutional
layer of ImageNet-ResNet have been shown to be a competitive

10https://www.elastic.co/
11Even if the ViQuAE questions are built from a subset of the TriviaQA questions,
we consider that the rephrasing of the TriviaQA questions is important enough for
considering this setting as a kind of zero-shot baseline. TriviaQA and ViQuAE have
very different questions lengths (see Section 4).

baseline for image retrieval [36, 44]. We rely on max-pooling to
reduce the feature map, given the results reported in [36].

CLIP [37] is a dual-encoder framework to learn visual represen-
tations from language supervision. The training objective is akin to
DPR, although CLIP matches images with relevant captions instead
of questions with relevant answers. CLIP has been trained on a
dataset of 400M image-caption pairs. We are only interested in the
visual encoder of CLIP and discard its text encoder. Indeed, CLIP
was trained on image captions, so we do not expect its text encoder
to be suited for QA.

For the sake of fair comparison, we systematically use a ResNet-
50 backbone for all visual representations. Note that all thesemodels
are used off-the-shelf and are not fine-tuned.

7.1.3 Multimodal fusion. Dense search is carried out with maxi-
mum inner product search, equivalent to cosine similarity, as fea-
tures are normalized beforehand (except for DPR). The image results
are then mapped to their associated passages to enable fusion with
the text search.

The result scores of these models have very different distribu-
tions. Therefore, before fusing them, they are normalized to have a
zero mean and unit variance. Following Karpukhin et al. [23] and
Ma et al. [32], the scores are fused through a linear interpolation:

𝑃 = 𝛼𝑏𝐵 + 𝛼𝑑𝐷 + F𝛼𝑎𝐴 + (1 − F) (𝛼𝑖 𝐼 + 𝛼𝑐𝐶) (1)

where𝐵, 𝐷,𝐴, 𝐼,𝐶 stands for BM25, DPR, ArcFace, ImageNet-ResNet,
and CLIP, respectively, and each has an interpolation hyperparam-
eter 𝛼 𝑗 (with

∑
𝑗 𝛼 𝑗 = 1). F ∈ {0, 1} denotes the detection of a face.

Only the top-100 passages are considered. Therefore, if, given a
query, a passage is not retrieved by a given system, then it is as-
signed to the minimum score of the other passages retrieved by
that system. Passages are then re-ordered with respect to the score
𝑃 . Interpolation hyperparameters 𝛼 𝑗 are tuned on the validation set
using grid search to maximize Mean Reciprocal Rank. To limit the
search space and facilitate direct comparison between BM25 and
DPR, we use a single model for text search, i.e. 𝛼𝑏 = 0 or 𝛼𝑑 = 0.

7.2 Results
Since it is based on TriviaQA [22], ViQuAE is only distantly super-
vised, i.e. a passage is deemed relevant if it contains the answer. We
evaluate IR with Precision@K (P@K) and Mean Reciprocal Rank
(MRR) along with Hits@K. Hits@K represents the proportion of
questions for which IR retrieves at least one relevant passage in
top-K. Metrics are computed with ranx [3].

Results are reported in Table 3. Statistical significance tests are
carried out using Fisher’s randomization test [16, 45].We also report
the text-only performance of BM25 and DPR as baselines.

7.2.1 DPR vs. BM25. DPR’s performance gain over BM25 is impres-
sive, even in the zero-shot setting where it significantly outperforms
BM25, and even the BM25-based multimodal search in P@K and
Hits@K when 𝐾 ≥ 5. Unlike BM25, DPR is able to find relevant
passages even with very few lexical overlap thanks to its abstract
semantic representations. For example, in the question “This art
museum12 is in which Russian city?”, zero-shot DPR is able to guess

12Referring to the Hermitage Museum.

https://www.elastic.co/
https://www.wikidata.org/wiki/Q132783


Table 3: IR results with the text-only baselines and the fusion of text and image searches, in both zero- and few-shot settings.
Superscripts denote significant differences in Fisher’s randomization test with 𝑝 ≤ 0.01. Hits@1 is omitted as it is equivalent
to P@1.

# Model MRR@100 P@1 P@5 P@20 Hits@5 Hits@20 Hits@100

a 𝐵 (BM25, text-only) 19.0 13.1 8.7 5.9 23.9 39.5 62.1
b 𝐷0 (DPR zero-shot, text-only) 30.5𝑎 21.2𝑎 19.1𝑎𝑐 16.2𝑎𝑐 40.3𝑎𝑐 60.5𝑎𝑐 76.9𝑎𝑐
c 0.3(𝐵 + F𝐴) + (1 − F) (0.1𝐼 + 0.3𝐶) 27.9𝑎 20.4𝑎 13.8𝑎 10.1𝑎 35.2𝑎 50.5𝑎 69.8𝑎

d 0.3(𝐷0 + F𝐴) + (1 − F) (0.1𝐼 + 0.3𝐶) 36.0𝑎𝑏𝑐𝑒 26.7𝑎𝑏𝑐𝑒 21.4𝑎𝑏𝑐 17.1𝑎𝑐 46.0𝑎𝑏𝑐 65.2𝑎𝑏𝑐𝑒 81.3𝑎𝑏𝑐

e 𝐷 𝑓 (DPR few-shot, text-only) 32.8𝑎𝑏𝑐 22.8𝑎 20.0𝑎𝑐 16.4𝑎𝑐 43.6𝑎𝑏𝑐 61.2𝑎𝑐 79.1𝑎𝑐

f 0.3(𝐷 𝑓 + F𝐴) + 0.2(1 − F) (𝐼 +𝐶) 37.9𝑎𝑏𝑐𝑑𝑒 27.8𝑎𝑏𝑐𝑒 22.5𝑎𝑏𝑐𝑒 17.5𝑎𝑐 49.5𝑎𝑏𝑐𝑑𝑒 65.7𝑎𝑏𝑐𝑒 82.3𝑎𝑏𝑐𝑒

Figure 5: Overlap between the lemmas of the question and
the top-1 passage retrieved by BM25 and DPR zero-shot
against the passage’s relevance. The box shows the quartiles
while the whiskers extend to show the rest of the distribu-
tion, except for outliers.

the answer (“Saint Petersburg”), while BM25 is fooled by the fol-
lowing passage that includes the “art” and “museum” terms several
times: “Ramat Gan [SEP] Man and the Living World Museum is
a natural history museum and the Maccabi Museum focuses on
the history of Jewish sports since 1898. The Ramat Gan Safari, a zoo
housing 1,600 animals, is the largest animal collection in the Middle
East. Other museums in the city include the Museum of Israeli
Art, Kiryat Omanut which houses sculpture galleries and a ceramics
studio, the Museum of Russian Art, the Museum of Jewish Art,
and the Yehiel Nahari Museum of Far Eastern Art.” In Figure 5, we
can see that DPR has very little lexical overlap compared to BM25,
while being more precise. However, its relevant passages tend to
overlap more with the question.

7.2.2 Mono- vs. Multi-modal. Fusing BM25 with image search pro-
vides a tremendous gain: +56% in P@1. Fusing DPR with image
search also results in significant performance gains, both in the

zero- and few-shot settings. It is worth pointing out that, in the few-
shot setting, the optimal 𝛼 hyperparameters are 𝛼𝑑 = 𝛼𝑎 = 0.3 and
𝛼𝑖 = 𝛼𝑐 = 0.2, i.e. the three modalities (text, face, and full image) are
near-equally represented and ImageNet-ResNet and CLIP equally
share the full-image modality. The performance gain brought by
the multimodal fusion can be analyzed according to the type of
entity the question is about. On questions about humans, P@1
jumps from 14.4 with BM25-only to 24.4 when fusing BM25 with
image search, which is a 70% improvement. In comparison, the 41%
improvement in P@1 on questions about non-humans is weaker.
Furthermore, on the subset of entities that overlap with MS-Celeb
(ArcFace’s pre-training dataset), P@1 further boosts to 25.7, which
is a 5% improvement compared to all humans. The trend is similar
with DPR, although it starts higher with its text-only performance.

7.2.3 Conclusion. Despite the improvement brought by DPR and
the multimodal fusion, there is still a lot of room for improvement,
which highlights the difficulty of the task, especially for questions
about non-human entities. This can be explained by the specialized
image representation of ArcFace, whereas ImageNet-ResNet and
CLIP are more general. It also highlights the need to study visual
representation of non-human entities, as exemplified in Section 1.

8 READING COMPREHENSION
Given a selected list of passages (e.g. from IR), RC aims at extracting
a concise answer to the question.

8.1 Methods
To set a baseline on our dataset, we rely on a text-only reader as
we argue that, once the relevant passage has been retrieved (and only
then), the question can be answered without looking at the image
(see e.g. Figure 1). RC is done with Multi-passage BERT [51]. This
model takes as input the concatenation of the question and passage
and encodes them with BERT [13]. The representations are then fed
into two different fully-connected layers, trained independently to
predict the start and end positions of the answer span, respectively.
At inference, the answer span probability is the product of the start
and end probabilities. In order to make answer scores comparable
across passages, Multi-passage BERT leverages the global normal-
ization technique of Clark and Gardner [8] so that all passages
share the same softmax normalization. For irrelevant passages, the
model is trained to predict the first position, i.e. that of the special
token [CLS]. Furthermore, following Karpukhin et al. [23], since



Query 1st result 2nd result 3rd result

“This arch bridge spans what river?” “Marlow Bridge [SEP] [...] The current suspen-
sion bridge was designed by William Tierney
Clark and was built between 1829 and 1832, re-
placing a wooden bridge further downstream
which collapsed in 1828. The Széchenyi Chain
Bridge, spanning the River Danube in Budapest,
was also designed by William Clark and it is a
larger scale version of Marlow bridge.”

“Hudson River [SEP] The width of the Lower
Hudson River required major feats of engineer-
ing to cross; the results are today visible in the
GeorgeWashington Bridge and the 1955 Tappan
Zee Bridge (replaced by the New Tappan Zee
Bridge) as well as the Lincoln and Holland Tun-
nels and the PATH and Pennsylvania Railroad
tubes. [...]”

“Pont de la Tournelle [SEP] The location of the
is the site of successive structures. The first, a
wooden bridge, was built in 1620. This bridge
connected the Eastern bank of the Seine (le quai
Saint-Bernard) to l’île Saint-Louis. It was subse-
quently washed away by ice in 1637, and again
on 21 January 1651. [...]”

“What was the last film directed by this film pro-
ducer?”

“David Lean [SEP] Sir David Lean (25 March
1908-16 April 1991) was an English film direc-
tor, producer, screenwriter and editor, respon-
sible for large-scale epics such as "The Bridge
on the River Kwai" (1957), "Lawrence of Arabia"
(1962), "Doctor Zhivago" (1965) and "A Passage
To India" (1984).

Bernard Herrmann [SEP] An Academy Award-
winner (for "The Devil and Daniel Webster", 1941;
later renamed "All That Money Can Buy"), Her-
rmann is particularly known for his collabora-
tions with director Alfred Hitchcock, most fa-
mously "Psycho", "North by Northwest", "TheMan
Who Knew Too Much", and "Vertigo".”

“David Lean [SEP] [...] Lean recruited long-
time collaborators for the cast and crew, includ-
ing Maurice Jarre (who won another Academy-
Award for the score), Alec Guinness in his sixth
and final role for Lean, as an eccentric Hindu
Brahmin, and John Box, the production designer
for "Dr. Zhivago".”

Figure 6: Queries along with the top-3 results of multimodal IR. The answer (in the relevant passage) is printed in bold font
and plausible answers in irrelevant passages are printed in italic. Face landmarks and bounding boxes, if detected, are shown
in red. The passage of text has been shortened due to space constraints.

the answer may appear several times in the same passage, the train-
ing objective is to maximize the marginal log-likelihood of all the
answer positions in the passage. We do not use re-ranking, as we
expect that re-ranking based on text-only will only worsen the
original IR order. We leave multimodal re-ranking for future work.
Instead, following Wang et al. [51], we experiment with weighting
the answer score 𝑎 with the IR score of the passage 𝑃 s.t. 𝑎 ← 𝑎 · 𝑃 .

The model is implemented and trained using Hugging Face’s
transformers library [52], itself based on PyTorch [34]. The hy-
perparameters are set as in [23], except for the ratio of relevant
and irrelevant passages per question, which is set to 8:16. During
inference, RC is carried out on the top-24 IR results.

As in the previous section, the model is first pre-trained on our
custom subset of TriviaQA, with IR carried out using BM25 on the
full 5.9M articles of KILT’s Wikipedia instead of our multimodal KB.
The model is then fine-tuned on ViQuAE, using the same hyperpa-
rameters, with IR done using the best model on our multimodal KB.
Although the model is pre-trained, given the small size of ViQuAE,
training was run 5 times with different seeds to account for the
variability caused by questions’ order and the random choice of
relevant and irrelevant passages among the pool. Since the IR scores
P have a zero mean and unit variance, before weighting the answer,
they are updated s.t. ∀𝑃 ∈ P, 𝑃 ← 1 −min(P) to ensure they are
greater than 1.

Table 4: Downstream RC results on ViQuAE’s test set, aver-
aged over 5 runs for the few-shot model. Both zero- and few-
shot models share the same IR results at inference (top-24
passages).

# Shots Setting F1 Exact Match
Zero Reader only 20.96 18.06
Zero + IR weighting 21.19 18.22
Few Reader only 25.43 ± 0.42 22.07 ± 0.54
Few + IR weighting 25.50 ± 0.38 22.10 ± 0.54
Few Semi-oracle 44.10 ± 0.39 40.32 ± 0.43
Few Full-oracle 63.17 ± 1.18 57.55 ± 1.10

8.2 Results
Following Joshi et al. [22] and Petroni et al. [35], we use Exact Match
(EM) and F1-score to evaluate the downstream QA, after standard
answer preprocessing (lowercasing, stripping articles, and punctu-
ation). Results are reported in Table 4. As expected, fine-tuning the
model on the training set provides a solid boost in performance:
+22% in EM. Weighing the answers with the IR score brings a slight
improvement but well within the standard deviation range of the
few-shot runs. Results are overall quite low compared to text QA
benchmarks.



To better understand these numbers, we studied two additional
settings. In the semi-oracle setting, the top-24 IR results are filtered
to contain only relevant passages (if any). This brings an impressive
83% improvement in EM compared to the baseline. This shows that
the reader is unable to disambiguate between a relevant and an
irrelevant passage. For instance, in both examples of Figure 6, two
out of three passages are irrelevant but provide a plausible answer
to the question. Compared to this setting, the improvements of
the IR weighting are insignificant. This motivates future research
towards better integration of the image in RC. In the full-oracle
setting, the reader is only fed relevant passages. The performance
gap keeps widening: +43% compared to the semi-oracle EM. It
corroborates the results of Section 7: KVQAE is very challenging
for current image representations, and future work should focus
on a better multimodal information fusion. Moreover, those fairly
high numbers support our hypothesis, while nuancing it: once the
relevant passage has been retrieved, the question may be answered
without looking at the image. These oracle results could therefore
serve as a topline for future work.

9 CONCLUSION AND PERSPECTIVES
We introduce a new dataset, ViQuAE, designed as a benchmark to
track the progress of KVQAE systems. The dataset has been anno-
tated with a semi-automatic pipeline that we also provide. Ques-
tions in the dataset may be answered using a freely available KB of
1.5M Wikipedia articles paired with images. We propose a baseline
along with the benchmark that addresses KVQAE as a two-stage
problem: IR and RC, with both zero- and few-shot learning methods
for the two stages. First, IR is carried out with well-established tech-
nologies: term-based text retrieval, CNN-based image retrieval, and
face recognition, as well as recent BERT-based retrieval techniques.
Then, RC also takes advantage of the ubiquitous BERTmodel. While
both stages could be improved, the experiments highlight the need
for a better IR. Indeed, our late fusion scheme neglects interac-
tion between the modalities. Future work should focus on a better
multimodal representation, ideally embedding text and image in
the same space, on both the query and KB sides. Special attention
should be paid to the representation of non-human entities. As
exemplified in Section 1 and demonstrated in Section 7.2, humans
can be clearly represented with their face, while other entities have
more heterogeneous depictions. We believe that multimodal repre-
sentations will also benefit the RC stage, as our experiments show
that using a text-only reader is insufficient if the IR stage is noisy.

We expect that this work will foster research towards a better
multimodal entity representation and question answering and, more
generally, a better understanding of the links between language,
vision, and knowledge.

ETHICAL CONSIDERATIONS
This paper describes the collection of a dataset to address the task
of KVQAE. We made sure that we had the right to redistribute the
dataset and KB, thus ensuring the reproducibility of our experi-
ments. Questions of our dataset are released under a CC BY 4.0
License13. Thanks to the Wikimedia Commons contributors, all
images of the dataset and the KB are either freely licensed or in the
13http://creativecommons.org/licenses/by/4.0/

public domain. The text in the KB comes from Wikipedia and is
therefore available under the CC BY-SA 3.0 License14. Moreover, in
order to comply with the GDPR, we do not use images of persons
unless they are famous and deceased.

During the automatic annotation process, some referring expres-
sions rely on the gender of the entity, if applicable. Note, however,
that the gender is not binary in Wikidata; transgender and cisgen-
der people get the same mentions, and intersex and non-binary
people15 are mentioned using other properties (see Section 3.2).
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A KNOWLEDGE BASE DETAILS
As explained in Section 5, our KB is built uponWikipedia, more pre-
cisely, the version available along with KILT. While KILT provides
a near 1-1 mapping between the 5.9M articles of Wikipedia and
their corresponding Wikidata entities, 11K entities (that is 0.2%) are
mapped to more than one article. Therefore, to build the KB, we
pruned some articles to obtain a 1-1 mapping using the following
heuristics: (i) keep the article that provides an answer for the Trivi-
aQA dataset; (ii) discard articles with “disambiguation” in the title
to remove disambiguation pages; (iii) keep the longest article for
the same purpose.

Questions in ViQuAE are grounded in an image, as are the ar-
ticles in the KB. A question about a given entity always uses a
different image than the one in the KB. However, other entities in
the KB might use the same image as a question in ViQuAE. For
example, a question about Odin uses the same image as Hugin and
Munin in the KB, or, a question about the Severn Bridge the same
as the M48 motorway in the KB. Out of the 3.3K images in ViQuAE
and the 1.4M in the KB, there is an intersection of 98 images that
correspond to 108 questions, that is 3% of ViQuAE. However, this
is not necessarily a bias that will lead to over-optimistic results.
Indeed, only 54 of these 108 questions have an answer in the article
of the KB that uses the same image.

B EXPERIMENT DETAILS
While our codebase allows to reproduce our experiments, we dis-
cuss a few details here, left out of sections 7 and 8 to facilitate
reading.

All experiments were carried out with NVIDIA V100 GPUs with
32GB of RAM.

B.1 Information Retrieval
For training DPR, we use the same hyperparameters as Karpukhin
et al. [23]. We train DPR using 4 V100 GPUs of 32GB, allowing a
total batch size of 256 (32 questions × 2 passages each × 4 GPUs).
This is crucial because each question uses all passages paired with
other questions in the batch as negative examples. Each question
is paired with 1 relevant passage and 1 irrelevant passage mined
with BM25. Both the question and passage encoder are initialized
from “bert-base-uncased”. We use the Adam optimizer [25] with a
learning rate of 2 × 10−5, 𝛽1 = 0.9, 𝛽2 = 0.999. The learning rate is
scheduled linearly with 1,237 warm-up steps. Gradients’ norms are
clipped at 2.

B.2 Reading Comprehension
As explained in Section 3, Joshi et al. [22] use entity linking to
find relevant passages of text for the questions of TriviaQA (upon
which our dataset is built). They also retrieve additional passages
using Bing Search web API. The reader is trained in priority on
the passages retrieved by the IR system, but, if the IR returns only
irrelevant passages, the pool of Joshi et al. [22] is used.

For training the reader, we use the same hyperparameters as
Karpukhin et al. [23], except for the ratio of relevant and irrelevant
passages per question, which is set to 8:16. We use a single V100
GPUwith a batch size of 72 (3 questions× 24 passages each). We use
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the Adam optimizer with a constant learning rate of 10−5, 𝛽1 = 0.9,
𝛽2 = 0.999. Gradients’ norms are clipped at 1.

C ANNOTATION INTERFACE
The manual annotation process is described in Section 3.3. The
user interface is depicted in Figure 7. The annotator is allowed

to rephrase the question freely (some ambiguous mentions are
suggested) as long as it does not change the answer. They should
also choose among the available images if the one selected (on the
top-left) is not appropriate (based on the reference image of the
entity, shown on the right). As a last resort, the annotator may also
plainly discard the question.



Figure 7: User interface to refine the automatic annotation pipeline.
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