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Abstract. The transfer of energy from large scales to smaller scales is investigated within the context of the neutral atomic
phases of the interstellar medium threaded by a magnetic field. More precisely, we derive the reflection and transmission
coefficients for linear transverse hydromagnetic waves incident normally on a cloud in slab geometry. Then, we obtain various
interesting physical quantities such as the energy density transferred into the cloud. The results obtained differ from those given
previously in the literature. We show in particular that the transfer of energy is efficient enough so that (i) the induced internal
motions are of the same order of magnitude than the bulk motion of the clouds and (ii ) the internal energy density provides
significative additional non-thermal support for cloud stability, reaching the same order of magnitude than support by the static
magnetic field. Finally, the case of molecular clouds is also briefly considered for which similar results are obtained.
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1. Introduction

The Interstellar Medium (ISM) is now understood as a medium
in which gravitational instability results from the complex in-
terplay of large scale motions and magnetic fields on the one
side and self gravity of the gas on the other side. Furthermore,
the ISM is subject to thermal instability and can be described
as a polyphasic medium built of a hot ionised phase, a warm
medium and a cold medium, all three roughly in thermal pres-
sure equilibrium (e.g. McKee & Ostriker 1977; Wolfire et al.
1995). Another major constituent of the ISM is made of molec-
ular gas aggregated in large complexes called Giant Molecular
Clouds (GMCs). They show an internal hierarchical struc-
ture in which no preferred scale emerges (e.g. P´erault et al.
1986; Falgarone & Phillips 1991). Most of the GMCs are self-
gravitating systems and therefore they are not in pressure equi-
librium with the other components of the ISM. However, as
suggested by results of Falgarone & Puget (1988), GMCs may
constitute by themselves a three phase medium with cold HI,
warm HI and molecular clumps all in approximate thermal
pressure equilibrium (McKee 1995).

In the early eighties, Larson (1981) showed that, on the
other hand, the dynamics of gravitationaly bound interstel-
lar molecular clouds is dominated by large scale supersonic
motions. This also suggested a non linear energy cascade
of turbulent type towards small scales (e.g. Scalo 1987).
Furthermore, the observation of non thermal velocity disper-
sions (e.g. Solomon et al. 1987; Caselli & Myers 1995) in
dense regions has confirmed that the ISM is a highly dynam-
ical system. This in turn has led to models of the ISM in
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which clouds are transient features formed by turbulent den-
sity fluctuations. It has even been argued that thermal insta-
bility and thermal pressure equilibrium are irrelevant for the
ISM (Ballesteros-Paredes et al. 1999; V´azquez-Semadeni et al.
2000).

Following this, a strong, still ongoing debate emerged, op-
posing advocates of both models of the ISM, i.e. stable multi-
phasic on the one hand or dynamic turbulent on the other hand.
For long, studies focused either on the role of turbulence or on
the development of a multiphasic medium by thermal instabil-
ity. However, it seems reasonable that, within the framework of
the ISM, thermal instability and turbulence are not mutually ex-
clusive. Works considering simultaneously both processes have
been done only recently, and their tight interplay is still far
from being clear. Indeed, it has been shown that large scale mo-
tions (possibly turbulent) may actually trigger condensation by
thermal instability (Hennebelle & P´erault 1999, 2000; Koyama
& Inutsuka 2000). On the other hand, turbulent motions may
result as a consequence of the condensation process due to
thermal instability itself (Koyama & Inutsuka 2002; Kritsuk &
Norman 2002). Moreover, depending on the cooling time to dy-
namical time ratio, condensation by thermal instability may or
may not be inhibited by turbulence (e.g. S´anchez-Salcedo et al.
2002).

In any case, it is clear that realistic models of the ISM,
including full theory of star formation, require precise under-
standing of the gravitational and the thermal instabilities in a
medium which is naturally subject to large scale motions. The
sources of these motions, differential rotation in spiral galaxies
and massive stars through supernovæ and expansion of HII re-
gions, make it a non local problem, both spatially and in time.
The kinetic energy is stored in these motions and redistributed
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over large distances by the magnetic field. The understanding
of this storage and spatial redistribution of the large scale ki-
netic energy is one of the critical ingredients of a complete the-
ory of the star formation process which is still poorly under-
stood. Furthermore, provided a strong enough magnetic field
exists at the time of structure formation, similar physics could
be relevant to the case of protogalaxies.

In the context of the magnetised ISM, it now is well known
that non-thermal spectroscopic line widths could be due to hy-
dromagnetic waves (Arons & Max 1975) which sustain inter-
nal supersonic (but alfv´enic) motions. The waves may carry
sufficient energy to oppose external compression or to con-
tribute significantly to cloud support against gravitational col-
lapse. On the other hand, wave-wave interactions may generate
density fluctuations in an initially homogeneous medium (e.g.
Elmegreen 1999; Falle & Hartquist 2002).

Hydromagnetic wave contribution to cloud stability has
been extensively investigated in the last decades (e.g.
Elmegreen 1985; Falgarone & Puget 1986; Carlberg & Pudritz
1990; Zweibel & McKee 1995; Gammie & Ostriker 1996;
Martin et al. 1997; Coker et al. 2000). In this paper, we deal
with one specific question which is the efficiency of energy
transfer by shear Alfv´en waves from orbital motions of clouds,
virialised in a larger structure, to internal velocity dispersion
of the clouds. We concentrate on the simplified case of slab
geometry, reminiscent of the sheet-like and filamentary struc-
ture observed in the ISM. We explore the energy transfer in
a biphasic medium such as described by models of the ISM
(e.g. Field et al. 1969; Wolfire et al. 1995) where the Cold
Neutral Medium (CNM) is condensed into clouds embedded
in a Warm Neutral Medium (WNM). Unlike recent studies of
similar problems (e.g. Coker et al. 2000), we explicitely assume
here that the density drops abruptly between the clouds and the
intercloud medium, the density contrast between the two media
being strong, typically 150. Such sharp boundaries are the nat-
ural consequence of thermal instability which, as we assume
here, is not inhibited by turbulent gas stirring (i.e. for cases
where the cooling time to dynamical time ratio is less than one
– see e.g. S´anchez-Salcedo et al. 2002). Our goal here is not
to model self-consistently the complete hierarchy of interstel-
lar clouds where the energy density is roughly scale invariant.
By concentrating on the Alfv´en wave transfer into a slab cloud
delimited by sharp boundaries, we rather aim at demonstrating
that the energy cascade from large scales is efficient enough in a
magnetised medium subject to thermal instability. First, we de-
rive the exact expressions of the amplitude reflection and trans-
mission coefficients and show that the induced internal velocity
perturbation is of the order of the transmitted one (Sect. 2.1).
Then, we concentrate on the internal turbulent energy densities
and show how internal interferences, which have been over-
looked in previous works, between multiply reflected waves,
enchance the energy injection. Consequently, externally gen-
erated Alfvén waves may contribute significantly to the cloud
stability and especially to its pressure equilibrium with the sur-
rounding medium (Sect. 2.2). Finally, restrictions of the for-
malism developed in this paper and its possible application to
molecular clouds are discussed in Sect. 3.

medium 1 medium 2 medium 1
inter-cloud cloud inter-cloud

A−−−−−−−→ At−−−−−−−→ Att−−−−−−−→
Ar←−−−−−−− Atr←−−−−−−−

←−−−−−−−−−−−−→
d

Fig. 1. Schematic overview of the situation. The incident waveA is
coming from the left onto a slab of widthd.

2. Energy transfer

We suppose that the ISM is pervaded by a magnetic fieldB
which can be decomposed as follows:

B = B0 + δB (1)

whereB0 = 〈B〉 is the slowly varying mean value of the field
defining thex direction andδB is the wave amplitude trans-
verse to the mean magnetic field. The velocity field can be de-
composed in a similar way and we take the mean flow null, so
that the only motionδu of particles is due to the propagation of
shear Alfvén waves.

2.1. Amplitude reflection, transmission and transfer
coefficients

An Alfv én wave incident on a cloud boundary will be partially
reflected back to the inter-cloud medium and partially trans-
ferred into the cloud. There, it will propagate up to the oppo-
site boundary where again, a part of it will be reflected whereas
the rest will be transmitted into the inter-cloud medium on the
other side of the cloud. In a slab geometry (assumed for sim-
plicity), when the steady state is reached (infinite number of re-
flections inside the cloud), the wave reflection and transmission
coefficients are easily calculable, assuming the usual continu-
ity conditions for both the wave amplitudes and their spatial
derivatives.

In the inter-cloud medium (medium 1), consider an Alfv´en
wave A of wave numberk1 and frequencyω arriving on the
cloud (medium 2) where the wave number isk2. Let us call
the reflected part of the waveAr, the part transmitted to the
other side of the cloudAtt, and the waves inside the cloudAt

andAtr (transferred, and reflected on the far side respectively –
cf. Fig. 1).

In the complex notation, and by choosing the phase so that
the amplitude of the incident wave is real, we can write the
different amplitudes in the following way:

A = ae−i(ωt−k1x) (2)

Ar = are
−i(ωt+k1x)

At = ate
−i(ωt−k2x)

Atr = atre−i(ωt+k2x)

Att = atte−i(ωt−k1x)
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where the underlining denotes a complex number. These are
the amplitudes of the gas motion. The amplitudes of the veloc-
ity are of course obtained by deriving these expressions with
respect to time. At the boundaries, we obtain the following con-
tinuity relations

a+ ar = at + atr at x = 0 (3)

atek2d + atre−k2d = attek1d at x = d

for the amplitudes (motion) and

k1

(
a− ar

)
= k2

(
at − atr

)
at x = 0 (4)

k2

(
atek2d − atre−k2d

)
= k1attek1d at x = d

for their derivatives (velocity), whered is the slab width.
Since the frequencyω is identical in the two media,

k2 =
VA1

VA2

k1 (5a)

=

√
ρ2

ρ1
k1 = nk1 (5b)

whereVA i and ρi are the Alfvén velocity and the density in
the mediumi, andn = n2 is the (real) refraction index of the
medium 2 (n1 being set to 1). In expression (5b), we have
assumed that the WNM and the CNM are pervaded by the
same magnetic field, and thereforeVA i ∝ ρ1/2

i . This assumption
is based on observational results of magnetic field measure-
ments in the HI interstellar component at scales below 100 pc
(Troland & Heiles 1986; Heiles 1987; Myers et al. 1995) which
show that magnetic intensity and gas density are on average
uncorrelated in the range 0.1 to 100 cm−3. According both to
observations and to biphasic models of the ISM, the density
contrast between the CNM and the WNM is typically of the
order of 150, and thereforen ∼ 12−13.

The solutions of systems (3) and (4) are

ar = (B+ iC)a

at = (D + iE)a

atr = (F + iG)a

att = (H + iJ)a (6)

where

B = (1− n2)K ∗ 2(n2 + 1)s2

C = −(1− n2)K ∗ 4nsc

D = (n+ 1)K ∗
(
(n+ 1)2 − (n− 1)2(c2 − s2)

)
E = (n+ 1)K ∗ 2(n− 1)2sc

F = (n− 1)K ∗
(
(n+ 1)2(c2 − s2) − (n− 1)2

)
G = (n− 1)K ∗ 2(n+ 1)2sc

H = 4nK ∗
(
2nc∗ cos (k1d) + (n2 + 1)s∗ sin (k1d)

)
J = 4nK ∗

(
(n2 + 1)s∗ cos (k1d) − 2nc∗ sin (k1d)

)
with

K =
(
8n2 + 2(n2 − 1)2s2

)−1
,

s= sin (k2d) and c = cos (k2d).

With these solutions, we compute the different factors enter-
ing into play for the transmission and the reflection of energy:
(i) the reflected wave amplitude squared (R2), (ii ) the wave
amplitude squared (T2) transmitted to the same medium on
the far side of the cloud, and finally (iii ) the wave amplitude
squared (T I2) within the cloud.

The reflection factor is obviously given by

R2 = |ar|2/|a|2 (7)

=

1+
(

2n
(n2 − 1)s

)2
−1

which yields

R2 = 0 for the resonant modes

(8)

R2 ∼ 1− 4
n2s2

for the non-resonant modes.

On the other side of the cloud, the transmission factor is given
by

T2 = |att|2/|a|2 (9)

=

(
1+

(n2 − 1)2

2n
s2

)−1

from which we see immediately that

T2 = 1 for the resonant modes

(10)

T2 ∼ 4
n2s2

for the non-resonant modes.

We verify that the relationR2 +T2 = 1 holds as is expected for
ordinary Fabry-P´erot interferometers.

Finally, we compute the internal coefficientT I2. Within the
cloud, two plane waves propagate in opposite directions and
interfere with each other. Therefore,T I2 is given by the fol-
lowing combination of the transmitted waveAt and the “trans-
reflected” waveAtr:

T I2 =
∣∣∣∣At + Atr

∣∣∣∣2 /
∣∣∣∣A

∣∣∣∣2 (11)

=
∣∣∣(D + iE)e−i(ωt−k2x) + (F + iG)e−i(ωt+k2x)

∣∣∣2
= D2 + E2 + F2 +G2

+2(DF + EG) cos (2k2x) + 2(GD− EF) sin (2k2x).

Because of the interferences, we obtain a function with spatial
dependence. The relevant coefficient to compute is thenT I2

averaged over the widthd of the cloud. The result is

T I2 = D2 + E2 + F2 +G2 +
2(DF + EG)

k2d
|s|. (12)

The resonant modes correspond tos∼ 0. In that situation, if we
set apart the particular case of long wavelengths with respect to
the slab width (k2d� 1), T I2 reduces to

T I2 =
[
D2 + E2 + F2 +G2

]
res

T I2 =
1
2

(
1+

1
n2

)
· (13)
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Table 1.Reflection (R), transmission (T) and internal coefficients (T I)
in both resonant and non-resonant regimes at the first non vanishing
order of 1/n.

At resonance Out of resonance

R 0 1− 2
n2s2

T 1 2
√

2
n

T I
√

2
2

2
n

In the case of waves with wavelengths far greater than the slab
width, the internal coefficient is equal to unity. Such waves set
the cloud particles into motion globally, and thereforeT I2 = 1
means only that waves withλ2 � d contribute entirely to the
cloud bulk motion.

For out of resonance waves, the spatially averaged internal
coefficient is

T I2 =
2

n2s2

(
1+

1− 2s2

k2d
+

1
n2

f (s)

)
(14)

with f (s) a function ofs = sin(k2d) only (the full expression
of f (s) is given in the caption of Table 2). At this stage, it is
important to recall that, as we stressed earlier in this paper, the
solutions obtained are those for the motion and velocity ampli-
tudes squared (cf. Eq. (6)). Now, the energy density in waves
is EK =

1
2ρδv

2 andEB =
δB2

8π for the kinetic and the magnetic
parts respectively. Thus, the ratio of the reflected energy to the
incident energy is reallyR2, and the ratio of the transmitted to
the incident energy is effectivelyT2 since, in each case, we deal
with the same densityρ1. However, the ratio of the internal en-
ergy to the incident one is notT I2, since the density is different
in the two media. The actual energy transfer coefficient is

EK2

EK1

=
ρ2

ρ1

δv22
δv21
= n2T I2. (15)

By themselvesR, T and T I, the square roots derived from
Eqs. (7), (9) and (12), can be considered as coefficients defin-
ing the rms values of the reflected, transmitted and transferred
velocity amplitudes.

For non-resonant wavelengths, they all depend ons2.
Restricting their expression to the first order in 1/n, we then
take 1

2 for the average ofs2 over a range in cloud sizes. The
values forR, T andT I in the different regimes are summarised
in Table 1. The ratio of the internal velocity to the transmit-
ted one,T I/T, is identical in both regimes. Moreover, this ratio

tends to
√

2
2 with increasingk, that is for small wavelengths,

independently of resonance (cf. Fig. 2). This means that the
energy transferred into the cloud is comparable to the energy
transmitted to the other side of the cloud. In other words,the
energy in internal motions is of the same order of magnitude
as the energy in the bulk motions of the cloud, contrary to what
has been claimed in the literature (Elmegreen 1985). This sig-
nificant difference, sketched in Fig. 2, is exclusively due to the
inclusion of interferences within the cloud which have not been
previously taken into account.

Table 2. rms ratios of the amplitudes and the energy densities in
both media (cloud and inter-cloud) computed for resonant and non-
resonant wavelengths. The expressions given for the resonant case
are exact, whereas expressions given for non resonant wavelengths
are second order approximates (withg(k2, s) =

(
1+ 1−2s2

k2d +
1
n2 f (s)

)
where f (s) = 3(1− 3|s|) − 2|s|3 − 4

s2 (1+ |s|), s= sin (k2d) whered is

the width of the cloud;n =
√
ρ2/ρ1 ).

rms At Out of
ratio resonance resonance
δv22
δv21

1
2(1+ 1

n2 ) 2
n2s2 g(k2, s)

EK2
EK1

1
2(n2 + 1) 2

s2 g(k2, s)
EB2
EB1

1
2(n2 + 1) 2

s2 g(k2, s)

2.2. Internal energy

A far more interesting consequence of the inclusion of internal
interferences is the fate of the energy densities within the cloud.
It is straightforward to see that the density of energy carried
by the waves is equally distributed between kinetic and mag-
netic degrees of freedom. Let us then compute just the kinetic
part of it.

For each frequency, the kinetic energy density in media (1)
and (2) writesEK i =

1
2ρiδv

2
i , wherei ∈ {1, 2}. As we wrote

earlier, the ratio of the kinetic energy densities is

EK2

EK1

=
ρ2

ρ1

δv22
δv21
= n2T I2 (16)

whereT I2 is given by Eqs. (12)–(14). As we can see, in the
resonant regime, the internal energy density of each type (ki-
netic and magnetic) due to Alfv´en waves amounts ton2/2 times
the external energy density. Thus, the enhancement in inter-
nal energy due to the sharp discontinuity in the matter density
is colossal since, for typical values of the ISM,n2 = ρ2/ρ1

reaches 102. Then, even in the non-resonant regime, if we take
again〈s2〉 = 0.5, the density of energy in the cloud is four times
bigger than the energy density carried by the incident waves.
Table 2 summarizes the values taken by the energy ratio in the
different modes.

These are the results for the energy transmissionper fre-
quencyω. However, for the question of stabilising efficiency,
we need to know what happens when the density discontinu-
ity is attacked by a spectrum of waves. Will the effect of reso-
nances be smeared away when summing up the contribution of
a whole spectrum of waves? As we have seen above, even in
a non-resonant regime, the internal energy density carried by
a wave of a given wavelength is greater than the incident en-
ergy density. Therefore, we expect the effect of resonances to
be diminished, but not completely destroyed.

Consider now a group of clouds evolving in the potential
well of a host galaxy and connected to each other by magnetic
field lines. Various effects such as supernovæ explosions and
orbital motions of the clouds contribute to the generation of
a spectrum of hydromagnetic waves (e.g. Falgarone & Puget
1986). In such a situation, magnetosonic waves are much more
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Fig. 2.Transfer coefficient (upper panels) and its ratio to the transmis-
sion coefficient (lower panels) as functions of wave numberk. Drawn
are both the expression which take internal interferences into account
(plain line) and the expression which does not (dotted line), for long
wavelengths (panelsa) andc)) and for short wavelengths (panelsb)
andd)). For illustration, the ratio of cloud density to intercloud density
is taken to ben = 10. The most important feature is the limit of

√
2

2
reached by the ratio of internal to bulk motions, independently of the
regime (paneld)).

affected by damping processes than Alfv´en waves (Zweibel &
Josafatsson 1983; McKee & Zweibel 1995). Therefore, at the
boundaries of each cloud, we can focus our attention on the
alfvénic part of the wave spectrum only.

Considering that energy is roughly equally distributed
among the different degrees of freedom, the amplitude of the
velocity perturbations in the intercloud medium is of the order
of the Alfvén speed at an injection scaleL = 2π

K comparable to
the mean distance between the clouds. At the external bound-
ary of a cloud, the Alfv´en wave spectrum can be expressed as

δv21(k) = V2
A1

(
k
K

)−α
(17)

whereVA1 is the Alfvén speed in the medium 1. At the injec-
tion scaleL, we havek = K andδv21(K) = V2

A1
which provides

the normalisation of the spectrum. The wave spectrum inside
the clouds is just the one above multiplied by the transfer coef-
ficient derived in (12):

δv22(k) = V2
A1

T I2(k)

(
k
K

)−α
, (18)

and the additional energy density due to this transfer of waves
is therefore

EK2 =
1
2
ρ2V2

A1
d

∫ ksup

kinf

T I2(k)

(
k
K

)−α
dk (19)

EK2 = n2 B2

8π
d

∫ ksup

kinf

T I2(k)

(
k
K

)−α
dk (20)

where the last line comes from the definition of the Alfv´en ve-
locity, VA1 =

B√
4πρ1

. The lower limit in wave number space,

kinf , corresponds to the first mode which contributes to the sup-
port of the slab. By choosing this lower cut-off, we do not in-
clude the bulk motion of the slab induced by the waves. We

Fig. 3. Ratio rE of the transmitted kinetic energy in Alfv´en waves to
the energy contained in the background magnetic fieldB as a function
of the ratio of the slab width to the mean distance between slabsd/L.
Several values of the wave spectral indexα were adopted. From top
to bottom,α = 1,1.5, 2,3, 10. The horizontal line indicates where
the transferred turbulent energy becomes comparable to the energy
provided by the background magnetic field. The oscillations visible
for d > 0.5 L correspond to the domination of coherent (resonant
modes) or incoherent (non-resonant modes) summation (peaks and
dips respectively). Calculations were performed withn ' 12.25.

take into account only the internal motions which are relevant
for the stability of the slab. If the mean distanceL between
slabs is larger than twice the slab width, the first mode oppos-
ing external compression is the one whose wavelength is twice
the slab widthd, i.e.kinf ' π/d which, for the typical size of a
CNM cloud (d ∼ 1.5 pc, McKee & Ostriker 1977), gives

kinf ' 6.79× 10−19 cm−1. (21)

Otherwise, the lower limitkinf is set by the lowest excited
mode in the external medium,K = 2π/L. Thereforekinf '
max

{
π
d ,

2π
L

}
.

The upper limit is set by the wave numberksup =
2xiνin
VA2

for which the wave frequencyω becomes comparable to the
ion-neutral collision frequencyνin (xi is the ionisation fraction
andVA2 is the Alfvén velocity inside the cloud). Using Eq. (7)
of McIvor (1977) for the ion-neutral collision frequency, and
with typical values of density and ionisation fraction for the
CNM (n ∼ 61 cm−3, xi ∼ 3×10−4, see e.g. Wolfire et al. 1995),
we find

ksup' 4.15× 10−17 cm−1 (22)

for a magnetic field strength of 5µG.
We integrated Eq. (20) numerically for a set of values of

the spectral indexα. Results are shown in Fig. (3) in terms of
rE = EK2/(B

2/8π), which is the ratio of the internal kinetic en-
ergy in Alfvén waves to the energy in the background fieldB, as
a function of the ratio of the slab widthd to the mean slab sepa-
rationL. Intuitively enough, steep wave spectra feed less wave
pressure into the cloud than shallow spectra. Nevertheless, even
for an extreme spectral index such asα = 10, the total internal
Alfv én wave pressure becomes comparable to the pressure of
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the background magnetic field when the mean separation be-
tween slabs is smaller than roughly 2.5 times the slab width.
More strikingly perhaps, for more reasonable spectral indices
(α ' 2−3, say), magnetic support provided by internal motions
can be an order of magnitude larger than support provided by
the mean field when the two length scales become comparable.
Thus, as we guessed above, resonant wave energy transfer is
not washed out when a full spectrum of waves is considered.

3. Discussion

As we have seen, in the stationary case, the density of energy
due to the injection of a spectrum of shear Alfv´en waves into
the cloud represents a non negligible fraction of the total en-
ergy available within the cloud. In some cases, its contribu-
tion is even dominant over the part provided by the static back-
ground magnetic field. This energy comes into play in the virial
equilibrium of the cloud in the form of non-thermal pressure,
providing additional support against self gravity and external
pressure of the reflected waves.

The results presented here were derived for a very simpli-
fied case. First of all, the assumed geometry is very peculiar
and the cloud boundaries are extremely sharp. In reality, the
situation is more complicated since the clouds assume complex
shapes. Moreover, the cloud boundary is probably less well de-
fined, although under the action of thermal instability the den-
sity discontinuity is actually sharp. The effects of a progressive
increase in density, instead of an abrupt step, are difficult to es-

timate. The refraction indexn =
(
ρ2

ρ1

)1/2
will be in that case an

increasing function of the distance within the boundary layer
before reaching a plateau inside of the cloud. Actually, accord-
ing to the so-called ray equation (d(nu)

ds = ∇n whereu is the
unity vector aligned withk ands the curvilinear abscissa along
the wave path), a gradient in then index will bend the trajectory
of the waves in the direction of increasingn, i.e. toward the in-
terior of the cloud. Since the waves are originally propagating
along the mean magnetic field lines, the bending of their path
will result in the coupling of Alfvén modes to magnetosonic
modes. The latter are known to be more dissipative than shear
Alfv én waves, and the energy transmission will thus be dimin-
ished. However, as long as the thickness of the boundary layer
remains negligible with respect to the cloud size, the situation
is likely not to differ very much from what has been presented
in the previous sections.

The problem of finite boundary size is of particular interest
within the context of molecular clouds. These are generally self
gravitating systems, not necessarily in thermal pressure equi-
librium with their surroundings, and the discontinuity between
molecular clouds and the surrounding medium is smoothed by
gravity. Furthermore, molecular clouds are also denser than the
atomic media studied in this paper. The magnetic field strength
cannot be considered anymore independent of density (as we
have assumed in Sect. 2.1). Indeed, as detailed calculations of
Mouschovias (1976) show for thermally supported clouds, the
mean magnetic field strengthB scales with the average gas den-
sity ρ as

B ∝ ρκ (23)

where 1/3 ≤ κ ≤ 1/2, and for an isotropically contract-
ing cloud, κ = 2/3. Nevertheless, if the boundary layer is
sufficiently thin, the energy injection mechanism explored in
this study should remain valid even in the case of molecular
clouds connected by a magnetic field, provided that the re-
fraction index is modified as to match the magnetic strength
scaling with density. This is easily done by replacingn by
n′ = VA1/VA2 as in the definition of the refraction index in
Eq. (5a). With the latter modification, our study applied to
molecular clouds corroborates the results found by Falgarone
& Puget (1986). For the conditions adopted in their paper, we
obtain a refraction indexn′ ' 8 and a maximum wave num-
berksup' 1.76× 10−17 cm−1. In their study, the cloud width is
d = 1.5 pc and the mean distance between clouds isL = 8 pc.
With these values, the ratio of the injected energy to the energy
in the background magnetic field amounts to

rE ' 0.20−3.65 (24)

for a spectral indexα = 2−4. Therefore, the energy in the ran-
dom internal magnetic field and the energy associated with the
mean field are of the same order of magnitude, which is pre-
cisely what Falgarone & Puget obtained. However, in their pa-
per, following a study of Clifford & Elmegreen (1983), mag-
netic field lines bendingat the cloud boundarygives birth to
a spectrum of wavesdirectly within the clouds while the ex-
ternal field remains essentially unperturbed. On the contrary,
we assumed that the wave spectrum is generated outside of the
clouds and we examined its transfer into the clouds. Our study
thus provides an alternate picture of the mechanism of energy
transfer mediated by the magnetic field.

Another restriction of the model presented here is the as-
sumption of steady state. As we have said in Sect. 2.1, the
steady state corresponds to an infinite number of internal re-
flections. Now, when a transverse wave hits the outer surface of
a cloud, its first effect is to compress it. Thus, the cloud begins
to shrink, increasing in density and in temperature. Depending
on its cooling efficiency, the cloud may become gravitationally
unstable in the direction parallel to the mean magnetic field,
and collapse before the steady state is reached. However, the
compression of the cloud would propagate at the cloud in-
ternal sound speedCs, which is roughlyCs ' 0.61 km s−1

for T = 45 Kelvins, whereas waves propagate at the internal
Alfv én speedVA2 ' 1.4 km s−1. Thus, the transfer of energy in
that case could be efficient enough and the internal turbulent en-
ergy could be rapidly sufficient to counteract the external wave
pressure. In that case, mhd-turbulent support would not be lim-
ited to the case of outwardly propagating Alfv´en waves, con-
trary to what has been suggested previously (Shu et al. 1987).

We are currently undertaking simulations of a more realis-
tic case where the transition layer between the slabs and the in-
tercloud medium is properly described. The spectrum of waves
in the external medium is generated by an ensemble of slabs in
relative motions which allows to test the spectral indexα and
the normalisation of the spectrum. Results will be presented in
a forthcoming article.
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4. Conclusion

We examined, in the simplified case of slab geometry and
steady state, the transfer of energy through shear Alfv´en waves
from large scales to small scales in the neutral ISM. At large
scales, energy is injected by bulk motions of cold clouds con-
nected by a magnetic field and virialised in the gravitational
potential well of the Galaxy. These motions generate a spec-
trum of hydromagnetic waves which propagate along the field
lines. In this work, we concentrated exclusively on the effi-
ciency of energy transfer in a thermally bistable magnetised
medium where clouds are in large density contrast with their
surroundings.

At the cloud boundaries, the waves are partially reflected
and partially transferred into the cloud. Taking explicitly into
account internal interferences, we first re-derived the reflection,
transmission and transfer coefficients. Our results for the trans-
fer coefficient differ from those available in the literature. Given
the correction, we have shown that the energy in internal mo-
tions is of the same order of magnitude as the energy in bulk
motions, contrary to what has been claimed earlier.

Moreover, resonant interactions of back and forth traveling
waves within the clouds drive internal motions and enhance
considerably the energy transfer. Depending on the geometry
and on the spectral index of the wave spectrum, the energy
of internal motions integrated over the whole spectrum con-
tributes significantly to the global energy budget of the clouds.
In some cases, energy provided by the injected Alfv´en waves
can be as large as ten times the energy of the background mag-
netic field. This makes the injected waves and their interfer-
ences a potentially important mean to establish pressure equi-
librium between the clouds and the intercloud medium.

Provided slight changes in the definition of the refraction
index, the formalism developed in this study could hold equally
for the case of molecular clouds, as long as the thickness of the
transition layer between the intercloud medium and the molec-
ular clouds is small with respect to the cloud size.

Our study is clearly far from providing a self-consistent
model of the cloud hierarchy in the ISM. We showed never-
theless that energy transfer via Alfv´en waves represents a po-
tentially important ingredient for such a model.
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