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THE DIMENSION OF THE MODULI SPACE OF SOLUTIONS OF THE

GRAVITATIONAL MONOPOLE EQUATIONS VIA THE ATIYAH-SINGER INDEX

THEOREMS.

GOURAB BHATTACHARYA

Abstract. Our main Theorem is we determined via the Atiyah-Singer index theorem that the dimensions

of the moduli space of solutions of the Gravitational monopole equations is

(0.1) c1(
√
L)2 +

57σ(X)− 30χ(X)

4
.

1. Introduction

It had been observed in [cf.2] and [cf.3] and other references that in four-dimensions, Einstein’s equations
with a nonzero cosmological constant (Rij = λgij , λ is the cosmological constant) on a Euclidean self-dual
spin manifold M can be replaced by five quadratic conditions on the curvature of an SU(2)-spin connection,
namely

(1.1)
1

4
F

(AB
[ab F

CD)
cd] = 0.

The Fab are the curvature components of the self-dual spin connection ω+
a on the principal SU(2)-bundle

SU(2) → P
M−→.

According to [cf.3], equations (1.1) is equivalent to the following set of equations,

(1.2) F AB
ab = −1

6
λΣ AB

ab

where

(1.3) Σ AB
ab := 2γ AA′

[a γ B
b] A′ ,

where γa is an SU(2)× SU(2) soldering form which defines a metric in the following form

(1.4) gab = γ AA′

a γbAA′ ;

with respect to this metric the Hodge ∗-operator in 4-dimensions helps to conclude Σab is self-dual, using
the representation (1.2), one also concludes Fab is self-dual. Fixing the orientation of the manifold, one can
conclude, the anti-self-dual part of the Weyl tensor vanishes, namely

(1.5) W− = 0,

therefore the 4-manifold is self-dual. Conversely, any conformally self-dual Einstein manifold with a cosmo-
logical constant (the constant can be zero, then it will only be a solution of vanishing Ricci tensor, namely
Rij = 0) arises as a solution the equation (1.1).

The author in a previous preprint [cf.4] had shown if the 4-manifold allows a Gravitational monopole
equation [cf.5], then the strict inequality λ < 0 occurs.

It is shown in [cf.2] that the linearized version of (1.1) has the following form with respect to a perturbation
A 7→ A+ C

(1.6) D1C := F
(AB

[ab DcC
CD)

d] = 0.

1
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Here Da is a covariant derivative with respect to A with curvature F . Infinitesimal gauge transforms
correspond to perturbations of the form [cf.2]

(1.7) Ca := D0(f,M,N) := (∇bf)Fba + [DbM,Fba] +DaN,

where N,M ∈ su(2) and f is a positive real-valued smooth function. One can show

(1.8) C ∈ kerD1/ ImD0

One notes, neither D0 nor D1 are elliptic, therefore one needs to ”enlarge” the domain of the operator, and
one defines

D = (D,D†
0)

D†
0 = (TrF abDaCb; [DaCb, F

ab];−DaCa)
(1.9)

where the adjoint D†
0 of D0 is defined with respect to the inner-product

(1.10) ⟨C,C⟩ =
∫
M

√
ggabC AB

a Cb AB .

One can rephrase the above computations in terms of the following chain complex

(1.11) 0 → ∧0 ⊗ ∧0 ⊗ ∧0 D0−→ ∧1 D1−→ ∧4

such that

(1.12) D1D0 = 0.

More explicitly [cf. 2]

D∗
0 : ∧1 → ∧0 ⊗ ∧0 ⊗ ∧0,

D∗
0C =

(
TrF abDaCb; [DaCb, F

ab];−DaCa

)
,

D∗
1 : ∧4 → ∧1,D∗

1ω = F cd
CDD

bωABCD
abcd

(1.13)

The covariant derivative also acts on tensors and can be assumed to be torsion free and is compatible with
respect to the metric obtained from equation (1.4). One therefore can construct corresponding ”Laplacians”
that act on the sections of the bundles in question [cf.2]

∆0 : ∧0 ⊗ ∧0 ⊗ ∧0 → ∧0 ⊗ ∧0 ⊗ ∧0, ∆0 := D∗
0D0;

∆1 : ∧1 → ∧1, ∆1 := D∗
1D1 + D0D∗

0;

∆2 : ∧4 → ∧4, ∆2 := D1D∗
1.

(1.14)

According to the Fredholm alternative, these Laplacians have an orthogonal decomposition of the space of
sections of each vector bundle, therefore [cf.2]

∧0 ⊗ ∧0 ⊗ ∧0 ∼= range(D∗
0)⊕ ker∆0,

∧1 ∼= range(D0)⊕ range(D∗
1)⊕ ker∆1,

∧4 ∼= range(D1)⊕ ker∆2

(1.15)

where the orthogonality of the decomposition is with respect to the inner products described above. One
can show, as in the case of de Rham cohomology, that the equivalence class [C], defined in (1.8), can be
identified with the kernel of the Laplacian (1.14) on Lie-algebra valued one-forms [cf. 2]:

(1.16) kerD1/ ImD0
∼= ker∆1.

One uses the definition of the Laplacians as in (1.14), and verifies explicitly that the perturbations are
elements of kernel of ∆1 if and only if

(1.17) D1C = 0 = D∗
0C.

these equations can be viewed as a combination of the linearized instanton equation and ”gauge fixing”
conditions [cf. 2].
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Now the linearized instanton equation (1.6) is equivalent to the following equation [cf. 2]

(1.18) D∗
1D1C = 0,

this implies,

(1.19) Db(FabABF
cd(ABDcC

CD)
d ) = 0.

From (1.17) we also get,

TrF abDaCb = 0,

[F ab, DaCb] = 0,

DaCa = 0.

(1.20)

First two equations of (1.20) implies [cf. 2]

(1.21) F abABDaC
CD

b = F ab(ABDaC
CD)
b ,

So, we remove the symmetrization in (1.19).
Since [cf. 2]

(1.22) Σ AB
ab Σ cd

AB = 4(δ[ca δ
d]

b +
1

2
ϵcdab).

we can replace (1.19) by

(1.23) Db[(δ [c
a δ

d]
b +

1

2
ϵcdab)DcCd] = 0.

One can expand the equation (1.23) and finds terms involving a gauge-co variant Laplacian, the Ricci tensor,
the Riemann tensor, the SU(2) curvature, and the gradient of a divergence; the latter three of these can be
made to vanish by using the cyclic identity for the Riemann tensor, the self-duality of the SU(2) curvature,
and the last equation of (1.20), respectively [cf. 2]. One therefore can deduce that the equation (1.17)
implies

(1.24) −DaDaCb +R a
b Ca = 0,

where R a
b is the Ricci tensor. We know, if M is Einstein, then

(1.25) R a
b = λδ b

a .

One uses (1.24) and (1.25) to get

(1.26) (−DaDa + λ)Cb = 0.

Equation (1.26) is an elliptic second-order differential equation [cf. 2] and, can be shown using the above
arguments that the kernel of an e11iptic operator on a compact manifold, as a vector space over the reals,
is finite-dimensional, the physical instanton perturbations form a finite-dimensional subspace of all possible
gravitational perturbations [cf. 2].

Usually the linear equation (1.6) equation has infinitely many solution but modulo the gauge group, the
solution space of the elliptic operator D is finite dimensional when M is compact and without boundary
(closed), this however means that the gauge-inequivalent solutions form a finite-dimensional subspace of all
possible perturbations.

Since, λ < 0 after introduction of the Gravitational monopole equation, one may determine the dimension
of the moduli space of solutions using the Atiyah-Singer index theorem. It can be shown that the linearization
is stable if the kernel of the adjoint operator of the elliptic operator D is trivial, more precisely,

(1.27) D∗ = (D†
1,D0)

has a trivial kernel if the perturbation is stable, here D∗
1 is the L2 adjoint with respect to the inner-product

introduced above (2.3). Point to be noted is, D∗
1 acts on totally symmetric, valence-four spinor-valued

four-forms ω

(1.28) D†
1ω = F cd

CDD
bω ABCD

abcd
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One can show the linearization (1.6) is stable if

(1.29) kerD† = kerD0 ∪ kerD†
1

is trivial. If kerD0 ̸= {0} the corresponding connection A is said to be reducible, that is there is an

infinitesimal automorphism of SU(2) → P →M fixes A. Now if kerD†
1 ̸= {0}, then corresponding non-zero

spinor ω ABCD
abcd satisfying

(1.30) D†
1ω

ABCD
abcd = 0

will be called harmonic Weyl spinor type, as ω ABCD
abcd has all the symmetries of a Weyl spinor.

To make our Gravitational monopole solutions stable, we will always assume ω ABCD
abcd = 0. But this

give rise to a new problem, we are forced to study Einstein spaces with harmonic Weyl spinor that allows
Gravitational monopole equations, we keep in mind that W± ̸= 0.

In the following sections, we shall linearize W± and compute the dimension of moduli space of solutions
of the Gravitational monopole equations.

2. Mathematical Preliminaries

Let M be smooth Riemannian manifold with a Riemannian metric g. Two metrics g1 and g2 are confor-
mally equivalent if there is a smooth nonzero function f :M → R+ to the positive reals such that g1 = fg2.
A conformal structure c on M is an equivalence class of metrics [g], such that c := [g]. In particular when
dimRM = 4, the Hodge isomorphism

(2.1) ∗g : Ωp(M) → Ω4−p(M), ∗2g = 1,

induces a splitting

(2.2) Ω2(M) ∼= Ω+ ⊕ Ω−

into the ± eigenspaces of ∗g.
One introduces a bilinear form on Ω2 using cup product, namely

(2.3) ⟨α, β⟩ = (α ∪ β)[M ].

With respect to the bilinear form (2.3) Ω+ (resp. Ω−) is positive (negative) definite. Actually, any smooth
3-dimensional subbundle of Ω2 with the stated property defines a unique conformal structure for which it
coincides with either Ω+ or Ω−. Infinitesimal deformations of a conformal structure can be described by
sections of the bundle Hom(Ω+,Ω−).

Let us consider the splitting corresponding to (2.2)

(2.4) so(4) ∼= so(3)+ ⊕ so(3)−

of Lie algebras. Consequently, we have a splitting of the bundle so(4)[M ] of infinitesimal isometries of TM
into so(3)+(M)⊕ so(3)−(M). The Riemannian curvature tensor is Ω2⊗ so(4)(M)-valued. Therefore, we can
consider its component in Ω± ⊗ so±(3)(M). The metric provides an isomorphism between the bundles TM
and T ∗M . In a similar manner the metric g defines an isomorphism

(2.5) Ω2(M) ∼= so(4)(M).

The isomorphism (2.5) provides a linear mapping of Ω±(M) into so(3)±. The construction induces a splitting
Ω± ⊗ so(3)± into a trace part, an antisymmetric part, and a trace free symmetric part. The trace free
symmetric part is denoted by Ω± ⊗Sym so(3)±. The corresponding component of the curvature tensor is the
self-dual (anti-self-dual) Weyl tensor W+ (W−).

Let us denote the linearization of W± by

(2.6) D : C∞(
Hom(Ω±,Ω∓)

)
→ Ω± ⊗Sym so(3)±.
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It is a second-order differential operator. We used above a special property of the Weyl tensor in dimension
four, is that it can be decomposed in an invariant way into two equal parts W±. So, require a conformal
structure c to satisfy only ”half” of the integrability condition. We say that c is self-dual (anti-self-dual) if

(2.7) W−(c) = 0 (W+(c) = 0).

We need a fact about the self-duality (anti-self-duality) equation, that its linearization is an elliptic equation
modulo the action of the diffeomorphism group of M . Consequently, the set

(2.8) C±(M) = {c | W±(c) = 0}/Diff(M)

of equivalence classes of self-dual (anti-self-dual) conformal structures, we expect them to be a smooth
manifold whose dimension can be calculated by the Atiyah-Singer Index Theorem as the index of the cor-
responding elliptic system. One can show that this is the case under two additional conditions. The first
condition can be stated in the following way: it is the vanishing of the cokernel of the linearization of W
at c ∈ C±(M). The second condition is that the group of diffeomorphisms of M acts freely on the space
of self-dual (anti-self-dual) connections. One can weaken this condition by considering the dimension of
the group Gc of conformal diffeomorphisms of c is (locally) constant at c. Then the Atiyah-Singer Index
Theorem says

(2.9) dim C±(M)− dimGc = Index(M) =
1

2
(29|σ| − 15χ),

where σ is the signature of M , and χ is its Euler characteristic.
The linearized operation of the diffeomorphism group on C is described by the operator

(2.10) L± : C∞
0 (TM) → C∞

0

(
Hom(Ω±,Ω∓)

)
; (LX)(λ) = π∓LXλ,

where (LX)± is the Lie derivative on the set of 2-forms, and π∓ is the projection onto Ω∓. One can show
L± is a differential operator in the vector field alone. Let us denote by L† the L2-adjoint with respect to the
Riemannian metric g. One can show that (D,L†) is an elliptic system of partial differential equations (of
mixed order). For a compact manifoldM ,, a smooth principal bundle P overM , (D,L†) induces a Fredholm
operator

(2.11) (D,L†) : U → V ⊕W,

where, U = Lp
2(Hom(Ω+,Ω−)), V = Lp

1(TP ), W = Lp(Ω+ ⊗Sym so(3)+) are Sobolev spaces with respect to
some metric on M .

3. Linearization of the Weyl tensor

The Weyl tensor in terms of indices is written the following form

(3.1) Wuijk = Ruijk +
1

n− 2
(Rukgij −Rujgik +Rijguk −Rikguj) +

1

(n− 1)(n− 2)
R(gujgik − gukgij).

where,

(3.2) Rt
ijk = − ∂

∂xk
Γt
ij +

∂

∂xj
Γt
ik − Γs

ijΓ
t
sk + Γs

ikΓ
t
sj ,

keeping in mind that Ruijk = gutR
t
ijk, and Γu

ij := gukΓij,k := 1
2

(
∂

∂xj gik + ∂
∂xi gjk − ∂

∂xk gij

)
, the notation

Γij,k is the Christoffel symbol of the first kind, and Γk
ij or

{ k

ij

}
is the Christoffel symbol of the second kind,

hence,

(3.3) Ruijk =
1

2

( ∂2

∂xi∂xj
guk +

∂2

∂xu∂xk
gij −

∂2

∂xu∂xj
gik − ∂2

∂xi∂xk
guj

)
+ gts(Γku,tΓij,s − Γuj,tΓik,s).
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The Ricci tensor is defined and denoted by

Rij := Rt
ijt =

∂

∂xj
Γt
it −

∂

∂xt
Γt
ij + Γs

itΓ
t
sj − Γs

ijΓ
t
st

=
∂2

∂xi∂xj
log

√
|g| − ∂

∂xt
Γt
ij + Γs

itΓ
t
js − Γs

ij

∂

∂xs
log

√
|g|.

(3.4)

One notes Rij = Rji, the curvature invariant R = gijRij . A space is called an Einstein space if Rij = λgij ,
where λ is an invariant. We therefore have

(3.5) R = nλ, and hence Rij =
R

n
gij .

Now we expand the Weyl tensor around the perturbed flat metric η with ”small” perturbation h with a
dimensionless constant α,

(3.6) gµν = ηµν + αhµν .

The result is,

(3.7) Rlin
αβµν =

1

2
(∂α∂µhβν + ∂β∂νhαµ − ∂α∂νhβµ − ∂β∂µhαν).

(3.8) Rlin
µν =

1

2
ηαλ(∂µ∂αhλν − ∂λ∂αhµν − ∂µ∂νhλα + ∂λ∂νhµα)

(3.9) Rlin = ηαληµν(∂λ∂νhµα − ∂α∂νhµν).

Putting everything together in the Weyl tensor formula (3.1) we get the required linearisation.

3.1. Linearization of Self-Dual (Anti-Self-Dual) Weyl tensors. We recall that the linearization of
W± is given by

(3.10) D : C∞(
Hom(Ω±,Ω∓)

)
→ Ω± ⊗Sym so(3)±.

It is a second-order differential operator. We can rewrite it into the following form:

Linearization of W+ : D2 : Γ(Ω2
+ ⊗ Ω2

−) = Γ(S2
− ⊗ S2

+)
π+−−→ Γ(S4

−)

φA′B′AB 7→ ∇A
(C′∇B

D′φA′B′)AB

Linearization of W− : D2 : Γ(Ω2
− ⊗ Ω2

+) = Γ(S2
+ ⊗ S2

−)
π−−−→ Γ(S4

+)

φABA′B′ 7→ ∇A′

(C∇
B′

D φAB)A′B′

(3.11)

Let X be an oriented Riemannian manifold of even dimension 2l and we also assume X is a spin manifold,
that is the first and second Stiefel–Whitney classes vanish. We denote by ∧p the bundle of exterior p-forms
with Ap = Γ(∧p) its space of smooth sections. The Hodge star operator ∗∧p → ∧2l−pis defined by,

(3.12) α ∧ ∗β = (α, β)ω ∈ ∧2l

where α, β ∈ ∧p, (α, β) is the induced inner product on p-forms and ω is the volume form.
From now everything will be 4-dimensional unless otherwise stated. We start with the symmetry of the

equations, namely the Lie algebras. The Lie algebra so(4) of the special orthogonal group SO(4) is not
simple. It can be decomposed into the direct sum of two copies of the Lie algebra so(3) of the group SO(3):

(3.13) so(4) ∼= so(3)⊕ so(3).

In terms of the group theory, one understands the above decomposition corresponds to the fact that the
universal covering group of SO(4) is the product of the two copies of SU(2). This fact in quantum mechanics
corresponds to ± 1

2 spins of an electron for each factor SU(2).
In terms of the geometry of the vector bundles, the decomposition so(4) ∼= so(3) ⊕ so(3) induces the

following decomposition (for a choice of g on X4) for the vector bundle
∧2

T ∗X → X,

(3.14) ∧2T ∗X ∼= ∧+ ⊕ ∧−,
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as a Whitney sum of two oriented 3-plane bundles. One can choose an oriented orthonormal frame for T ∗
UX

for an open set U ⊂ X. One therefore has,

(3.15) ∧± = Span
{
(e1 ∧ e2 ± e3 ∧ e4), (e2 ∧ e3 ± e1 ∧ e4), (e3 ∧ e1 ± e2 ∧ e4)

}
.

We now use the unique Levi-Civita connection ∇ on ∧2T ∗X to find a suitable decomposition of the curvature
tensor under the action of O(4). The first step towards it is to note that ∇g = 0, this however means that
∇ is covariantly constant, that is ∇ maps sections of ∧± into ∧± ⊗ T ∗X; there is no mixed term mapping
∧+ into ∧− ⊗ T ∗X. The curvature of the Levi-Civita connection defines a section of ∧2T ∗X ⊗

∧2
T ∗X,

correspondingly a decomposition of ∧2T ∗X ⊗
∧2

T ∗X into four matrix-blocks of size 3× 3, more precisely,
the Riemann curvature tensor defines, in general, a self-adjoint linear transformation R : ∧2 → ∧2 such that,

(3.16) R(ei ∧ ej) = 1

2

∑
k,l

Rijkle
k ∧ el,

relative to the decomposition ∧2 = ∧+ ⊗ ∧−, the operator R has the following form,

(3.17) R =

[
A B
Bt C

]
where, B ∈ Hom(∧−,∧+) (is the traceless Ricci curvature)

0

Ric, and A ∈ End(∧+), that is A is symmetric
about its diagonal, that is At = A, similarly for C ∈ End(∧−) we have Ct = C.

This representation of the curvature tensor R gives us a complete decomposition of it into irreducible
components, namely

(3.18) R → (TrA,B,A− 1

3
TrA︸ ︷︷ ︸

W+

, C − 1

3
TrC︸ ︷︷ ︸

W−

)

TrA = TrC = 1
4s where s is the scalar curvature.

More elaborately, if the basis of ∧± in (3.15) is denoted by {xi±}3i=1, then the curvature tensor R has the
following expansion

(3.19) R =W+
ij x

i
+ ⊗ xj+ +W−

ij x
i
− ⊗ xj− +Bijx

i
+ ⊗ xj− +Bt

ijx
i
− ⊗ xj+ − s

12
(xi+ ⊗ xj− + xi− ⊗ xj+).

If we denote the projection operator by,

(3.20) P± :=
1

2
(1± ∗) : ∧ → ∧±,

then,

(3.21) W± = P± ◦Rm ◦ P± − s

12
Id±

We now assume X ∼= R ×M3 with M3 is smooth and has has non-positive scalar curvature. In a local
geodesic coordinate the curvature tensor (3.3) has the following form

0

Rlijk = − ∂

∂xl

0

Γjk,i +
∂

∂xk

0

Γjl,i

0

R0jkl =
∂

∂xl

0

Γjk,0 −
∂

∂xk

0

Γjl,0 =
1

2

[ d
dt

( ∂

∂xk
0
gjl

)
− d

dt

( ∂

∂xl
0
gjk

)]
0

R0j0l =
∂

∂xl

0

Γj0,0 −
∂

∂x0

0

Γjl,0 =
1

2

d2

dt2
0
gjl

(3.22)

We use the ”electric” and ”magnetic” field on R ×M3 to linearize the self-dual Weyl tensor, this is how it
is done, one has the isomorphism

(3.23) Ω1(M3)⊕ Ω1(M3) → Ω2(R×M3)
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via

ω = dt ∧ π∗(E) + π∗(∗B),

Ek = ω0k, Bi =
1

2
εijkωjk

(3.24)

We now exploit the bi-linear nature of the curvature form R with respect to electric and the magnetic fields

(3.25) ⟨(E,B), R(E′, B′)⟩ = αijEiE
′
j + βij(EiB

′
j + E′

iBj) + γijBiBj

and get back the decomposition (3.17) of the curvature tensor R. Therefore the Weyl tensor decomposition
(3.21) implies, the linearisation of W± (upto the nonlinear terms) are the following

αij + βij + γij(3.26)

in (3.17). More explicitly

αjl = R0j0l =
1

2

d2

dt2
0
gjl,

βij =
1

2
εjklR0ikl =

1

4
εjkl

[ d
dt

( ∂

∂xk
0
gjl

)
− d

dt

( ∂

∂xl
0
gjk

)]
= −1

2
εjkl

d

dt

( ∂

∂xk
0
gjl

)
γij =

1

4
εiklεjmnRklmn = −(Ricij −

1

2
gij TrRic) = −Einij ,

(3.27)

Thus, the linearization of W+ is, (dots denote derivatives in the R-direction)

(3.28) (W+)ij =
1

2

d2

dt2
0
gjl −

1

2
εjkl

d

dt

( ∂

∂xk
0
gjl

)
− Einij = (

1

2
g̈ − 1

2
dġ − Ein)ij .

Thus, we get the linear operator modulo trace,

(3.29) D =
1

2
ḧ− 1

2
/dh− /Eh.

We use this equation to compute the dimensions of the moduli space of solutions on the finite and infinite
cylinders [a, b]×M3 and R×M3. This will appear in a future work of the author [cf.1].

4. The Gravitational Monopole Equations

In [cf. 5] the Gravitational Monopole equations were introduced in the following sense. Let (X4, g) be
a Riemannian spin 4-manifold. Then the Clifford algebra bundle Cl(X4) is a vector bundle over X4 with
fibre at x ∈ X4 is the Clifford algebra Cl(TxX). With respect to the metric g, one identifies (isomprphism)
Cl(TxX) with Cl(T ∗

xX). Therefore, as a vector space, this is isomorphic to ∧T ∗
xX. Let us also assume E → X

is a Clifford module bundle with a covariant derivative ∇E . Then for each x ∈ X there is a Clifford action
c : T ∗

xX ⊗ Ex → Ex via c(α⊗ s) = c(α)s.

Definition 4.1. The twisted Dirac operator associated to (E,∇E) is the operator,

(4.1) /∇ := c ◦ ∇E : C∞(X,E) → C∞(X,E).

The equations we wish to consider are (sometimes we omit the mapping c and the dimension 4 for the
convenience of computations),

/∇ψ = (d+ d∗)ψ = 0,

c(W+
g ) =

1

4
⟨ei · ejψ,ψ⟩ei ∧ ej ,

or, c
(
(W+

g )ijkl

)
ei ∧ ej = 1

4
⟨ek · elψ,ψ⟩.

(4.2)
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5. The space of conformal structures

As always, we consider a closed oriented smooth 4-manifold X. A smooth Riemannian metric g on X is
a smooth section of the bundle Sym2T ∗X of symmetric 2-tensors which is positive definite everywhere. The
space M of all Riemannian metrics on X is a convex open cone in Γ(Sym2T ∗X). Therefore the tangent
space TgM is canonically isomorphic to Γ(Sym2T ∗X). We denote by D the group of orientation-preserving
diffeomorphisms of X is an infinite-dimensional Lie group acting on M by pullback. The following theorem
is due to Bourguignon [cf.6]:

Theorem 5.1. Let X be a closed oriented smooth manifold of dimension ≥ 2. The space M/D of Rie-
mannian structures is a stratified Hausdorff space with dense open stratum M∗/D where Ig is the stabilizer
of D of a metric g ∈ M, also M∗ =

{
g ∈ M : Ig = {e}

}
. One can further show that M∗/D is a manifold.

One considers the action of D on X ×M. The quotient space descends naturally to M/D, the fibre over
[g] is diffeomorphic to X/Ig. When one restricts the above to M∗, one obtains a smooth fibre bundle P
over M∗/D. By definition, the fibres Pg are isometric to (X, g). One therefore concludes P → M∗/D is a
universal family of metrics with no isometries.

Let us denote by C∞
+ the space of positive smooth functions, then the group C := D × C∞

+ acts on the
quotient of the space of metrics in the following way:

(5.1) (ϕ1, f1) · (ϕ2, f2) = (ϕ1 ◦ ϕ2, f2 · (f1 ◦ ϕ2)),

also C acts smoothly on M on the right:

C ×M → M
((ϕ, f), g) 7→ f · ϕ∗(g).(5.2)

The stabilizer Cg of g is called the conformal isometry group of g. One can show Cg is compact unless
X ∼= Sn.

The following theorem is well-known:

Theorem 5.2. Let X be a closed oriented smooth manifold of dimension ≥ 3. We further assume X is not
diffeomorphic to Sn. The space M/C of conformal structures is a stratified Hausdorff space with dense open
stratum the manifold M∗∗/C, where M∗∗ =

{
g ∈ M : Cg = {e}

}
. The singularities of M/C are quotients

by compact groups.

So, we get a universal family of conformal structures C over M∗∗/C.

6. The construction of the Elliptic complex

To get an elliptic complex corresponding to the data of the Gravitational monopole equations, we modify
the data a little bit. So, we assume, A is a spin connection on the smooth 4-manifold X. ψ is a section of
S+, so we relace the Dirac data ψ ∈ ker(d + d∗) to ψ ∈ kerDA. In this way, the Dirac operator becomes

dependent on A and we get a more general context. Let Â be the induced connection on the line bundle

L → X. We denote by FÂ the curvature corresponding to the connection Â. We put no restriction on FÂ.
All the restrictions are on the self-dual part of the Weyl tensor of X.

In the case of a line bundle, the gauge group G = M(X,U(1)) as a space of maps is well-defined as it is
only dependent on the transition functions. The action of G on the pair (A,ψ) is given in the following way:

(6.1) λ : (A,ψ) → (A− λ−1dλ, λψ),

and on Â by

(6.2) Â− 2iλ−1dλ.

We verify the following:

(6.3) DA−λ−1dλ(λψ) = λDAψ + dλ · ψ − dλ · ψ.
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The self-dual part F+

Â
of the curvature tensor FÂ also remains invariant

(6.4) F+

Â−2λ−1dλ
= F+

Â
− 2d+(λ−1dλ) = F+

Â
.

Since the metric gij 7→ gAA′BB′ = εABεA′B′ , corresponding U(1)-action on the metric is just multiplication
by |λ|2 = 1, therefore W+ remains invariant, on the other hand

(6.5) ⟨eiejλψ, λψ⟩ = |λ|2⟨eiejψ,ψ⟩ = ⟨eiejψ,ψ⟩,

as |λ| = 1.
Now we study the kernel of the linearized operator TgW

+ : TgM → Γ(Sym2
0∧2

+). The deformations we
shall consider will be represented by the first cohomology of the complex

(6.6) Γ(TX)⊕ Γ(R) τ∗

−→ Γ(Sym2
0∧2

+)
TW+

−−−→ Γ(Sym2
0∧2

+),

where R represents trivial R-bundle overX. Γ(Sym2T ∗X) = TgM = Hom(∧2
+,∧2

−)⊕R.. ButHom(∧2
+,∧2

−)
∼=

∧2
+ ⊗∧2

−. If we want to mod out the trivial line bundle R then we must work with M/C∞
+ , and the section

space Γ(R) is replaced by the orbit space C∞
+ (g).

The problem is not underdetermined as the Gravitational monopole equation (4.2) gives additional re-
striction on the scalar curvature, that is s = sg < 0, hence a linearization at g gives the following complex

(6.7) Γ(TX)
δ∗−→ Γ(Sym2T ∗X)

TW+⊕Tg−−−−−−→ Γ(Sym2
0∧2

+)⊕ Γ(R).

Theorem 6.1. The complex (6.7) is elliptic with index equals to

(6.8)
1

2
(29|σ(X)| − 15χ(X)),

where χ(X) is the Euler characteristic of X and σ(X) are the signature of X.

By the index theorem for the twisted Dirac operator

(6.9) Index(DA) = −
∫
X

ch(
√
L)Â(X).

The Chern character is known to be

(6.10) Ch(
√
L) = 2(1 + c1(L)

2 + · · · )

the Â-genus is

(6.11) Â(X) = 1− 1

24
p1(X) + · · · ,

where p1(X) is the first-Pontrjagin class. The top degree form of Ch(
√
L)Â(X) is 1

12p1(X) + c1(L)
2, but

1
3p1(X) = σ, therefore we have the result

(6.12) Index(DA) = c1(
√
L)2 − σ

4
.

Therefore we have the following theorem

Theorem 6.2. The moduli space of solutions of the Gravitational monopole equation has dimension (as-
suming the index σ(X) ≥ 0)

1

2
(29σ(X)− 15χ(X)) + c1(

√
L)2 − σ

4

= c1(
√
L)2 +

57σ(X)− 30χ(X)

4

(6.13)
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